Abstract
Considering the ultrashort optical soliton propagation in the non-Kerr media, the cubic-quintic nonlinear Schrödinger equation with Raman effect is studied through the dependent variable transformation and Hirota method. Based on symbolic computation, the bilinear form, the explicit one- and two-soliton solutions for the equation are presented. The constraint parametric condition for the existence of soliton solutions is also derived. Propagation characteristics and interaction behaviors of the solitons are graphically shown and discussed: (1) Overtaking elastic interactions of the two solitons; (2) periodic attraction and repulsion of the bounded states of two solitons; (3) propagation in parallel of the two solitons.





References
Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, New York (1991)
Agrawal, G.P.: Nonlinear Fiber Optics, 4th edn. Academic Press, San Diego (2007)
Alka Goyal, A., Gupta, R., Kumar, C.N., Raju, T.S.: Chirped femtosecond solitons and double-kink solitons in the cubic-quintic nonlinear Schrödinger equation with self-steepening and self-frequency shift. Phys. Rev. A 84, 0638309-1–0638309-6 (2011)
Calogero, F., Eckhaus, W.: Nonlinear evolution equations, rescalings, model PDES and their integrability: I. Inverse Probl. 3, 229–262 (1987)
Chegini, N.G., Salaripanah, A., Mokhtari, R., Isvand, D.: Numerical solution of the regularized long wave equation using nonpolynomial splines. Nonlinear Dyn. 69, 459–471 (2012)
Clarkson, P.A., Tuszynski, J.A.: Exact solutions of the multidimensional derivative nonlinear Schrödinger equation for many-body systems near criticality. J. Phys. A 23, 4269–4288 (1990)
Fanjoux, G., Michaud, J., Delqué, M., Furfaro, L., Maillotte, H., Sylvestre, T.: Spatio-temporal dynamics of multicolor spatial Kerr solitons. Opt. Quantum Electron. 40, 271–279 (2008)
Gedalin, M., Scott, T.C., Band, Y.B.: Optical solitary waves in the higher order nonlinear Schrödinger equation. Phys. Rev. Lett 78, 448–451 (1997)
Hirota, R.: Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons. Phys. Rev. Lett. 27, 1192–1194 (1971)
Johnson, R.S.: On the modulation of water waves in the neighbourhood of kh\(\approx \)1.363. Proc. R. Soc. Lond. A 357, 131–141 (1977)
Kim, W.S., Moon, H.T.: Soliton-kink interactions in a generalized nonlinear Schrödinger system. Phys. Lett. A 266, 364–369 (2000)
Kodama, Y.: Optical solitons in a monomode fiber. J. Stat. Phys. 39, 597–614 (1985)
Kundu, A.: Landau-Lifeshitz and higher-order nonlinear systems gauge generated from nonlinear Schrödinger equation-type equations. J. Math. Phys. 25, 3433–3438 (1984)
Liu, W.J., Tian, B.: Symbolic computation on soliton solutions for variable-coefficient nonlinear Schrödinger equations in nonlinear optics. Opt. Quantum Electron. 43, 147–162 (2012)
Lü, X., Peng, M.S.: Nonautonomous motion study on accelerated and decelerated solitons for the variable-coefficient Lenells-Fokas model. Chaos 23, 013122-1–013122-7 (2013)
Menezes, J.W.M., Sousa, J.R.R., Fraga, W.B., Lopes, V.C.M., Lima, F.T., Sobrinho, C.S., Sombra, A.S.B.: Spatiotemporal optical solitons in planar waveguide with periodically modulated cubic-quintic nonlinearity. Opt. Quantum Electron. 42, 179–192 (2010)
Mitschkem, F.M., Mollenauer, L.F.: Discovery of the soliton self-frequency shift. Opt. Lett. 11, 659–661 (1986)
Pushkarov, D.I., Tanev, S.: Bright and dark solitary wave propagation and bistability in the anomalous dispersion region of optical waveguides with third- and fifth-order nonlinearities. Opt. Commun. 124, 354–364 (1996)
Qi, F.H., Tian, B., Lü, X., Guo, R., Xue, Y.S.: Darboux transformation and soliton solutions for the coupled cubic-quintic nonlinear Schrödinger equations in nonlinear optics. Commun. Nonlinear. Sci. Numer. Simul. 17, 2372–2381 (2011)
Radhakrishnan, R., Kundu, A., Lakshmanan, M.: Coupled nonlinear Schrödinger equations with cubic-quintic nonlinearity: Integrability and soliton interaction in non-Kerr media. Phy. Rev. E 60, 3314–3323 (1999)
Sarma, A.K.: Solitary wave solutions of higher-order NLSE with Raman and self-steepening effect in a cubic-quintic-septic medium. Commun. Nonlinear Sci. Numer. Simul. 14, 3215–3219 (2009)
Skarka, V., Berezhiani, V.I., Miklaszewski, R.: Spatiotemporal soliton propagation in saturating nonlinear optical media. Phys. Rev. E 56, 1080–1087 (1997)
Soto-Crespo, J.M., Pesquera, L.: Analytical approximation of the soliton solutions of the quintic complex Ginzburg-Landau equation. Phys. Rev. E. 56, 7288–7293 (1997)
Sun, Z.Y., Gao, Y.T., Yu, X., Liu, W.J., Liu, Y.: Bound vector solitons and soliton complexes for the coupled nonlinear Schrödinger equations. Phys. Rev. E 80, 066608-1–066608-11 (2009)
Tian, B., Gao, Y.T.: Variable-coefficient higher-order nonlinear Schrödinger model in optical fibers: New transformation with burstons, brightons and symbolic computation. Phys. Lett. A 359, 241–248 (2006)
Wang, M.L., Zhang, J.L., Li, X.Z.: Solitary wave solutions of a generalized derivative nonlinear Schrödinger equation. Commun. Theor. Phys. 50, 39–42 (2008)
Wang, P., Tian, B.: Symbolic computation on the bright soliton solutions for the generalized coupled nonlinear Schrödinger equations with cubic-quintic nonlinearity. Opt. Commun. 285, 3567–3577 (2012a)
Wang, P., Tian, B.: Symbolic computation on soliton dynamics and Bäcklund transformation for the generalized coupled nonlinear Schrödinger equations with cubic-quintic nonlinearity. J. Mod. Opt. 59, 1786–1796 (2012b)
Acknowledgments
This work has been supported by Nature Science Basic Research Plan in Shaanxi Province of China (Grant No. 2014JM8338), the China Postdoctoral Science Special Foundation (Grant No. 201104659), the China Postdoctoral Science Foundation (Grant No. 20100481322), the Foundation of State Key Lab on Integrated Service Networks (Grant No. ISN1003006), and the Fundamental Research Funds for the Central Universities (Grant No. K50511010023). This work is also part supported by 111 Project of China (B08038).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wang, P., Shang, T., Feng, L. et al. Solitons for the cubic-quintic nonlinear Schrödinger equation with Raman effect in nonlinear optics. Opt Quant Electron 46, 1117–1126 (2014). https://doi.org/10.1007/s11082-013-9840-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11082-013-9840-8