Skip to main content
Log in

Polymeric \(N\)-stage serial-cascaded four-port optical router with scalable \(3N\) channel wavelengths for wideband signal routing application

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Device architecture and design scheme of a universal \(N\)-stage cascaded polymer four-port optical router with scalable 3\(N\) channel wavelengths are proposed. Basic cross-coupling two-microring resonator routing element based on polymer materials is optimized for single-mode transmission, low optical loss and phase-match between microring waveguide and channel waveguide. Then, a one-stage four-port optical router is constructed using four-group basic routing elements, which has 12 possible I/O routing paths and 3 channel wavelengths. The insertion losses of each channel wavelength along every routing path are within the range of 0.04–0.63 dB, the maximum crosstalk between the on-port along each routing path and other off-ports is less than \(-39\) dB, and the device footprint size is \(\sim \)0.13 mm\(^{2}\). Compared with the previously reported four-port silicon optical routers, this device possesses similar ring radius (\(\sim \)10 \(\upmu \)m) and device size (\(<\)1 mm\(^{2})\). Aiming at wideband signal routing applications, we then construct a universal \(N\)-stage cascaded polymer four-port optical router possessing scalable 3\(N\) channel wavelengths. The proposed routing structure has potential application in photonic networks-on-chip, because of low insertion loss, low crosstalk, small footprint size, and scalable wideband 3\(N\) routing wavelengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Barwicz, T., Byun, H., Gan, F., Holzwarth, C.W., Popovic, M.A.: Silicon photonics for compact, energy-efficient interconnects. J. Opt. Netw. 6, 63–73 (2007)

    Article  Google Scholar 

  • Biberman, A., Lee, B.G., Droz, N.S., Lipson, M., Bergman, K.: Broadbang operation of nanophotonic router for silicon photonic networks-on-chip. IEEE Photon. Technol. Lett. 22, 926–928 (2010)

    Article  ADS  Google Scholar 

  • Droz, N.S., Wang, H., Chen, L., Lee, B.G., Biberman, A., Bergman, K., Lipson, M.: Optical 4\(\times \)4 hitless silicon router for optical networks-on-chip (NOC). Opt. Exp. 16, 15915–15922 (2008)

    Article  ADS  Google Scholar 

  • Gu, H.X., Mo, K.H., Xu, J., Zhang, W.: A low-power low-cost optical router for optical networks-on-chip in multiprocessor systems-on chip. In: Proceedings of IEEE Computer Society Press Annual Symposium, pp. 19–24 (2009)

  • Hu, T., Qiu, H.Y., Yu, P., Qiu, C., Wang, W.J., Jiang, X.Q., Yang, M., Yang, J.Y.: Wavlength-selective 4\(\times \)4 nonblocking silicon optical router for networks-on-chip. Opt. Lett. 36, 4710–4712 (2011)

    Article  ADS  Google Scholar 

  • Ji, R., Yang, L., Zhang, L., Tian, Y., Ding, J., Chen, H., Lu, Y., Zhou, P., Zhu, W.: Microring-resonator-based four-port optical router for photonic networks-on-chip. Opt. Exp. 19, 18945–18955 (2011a)

    Article  ADS  Google Scholar 

  • Ji, R., Yang, L., Zhang, L., Tian, Y., Ding, J., Chen, H., Lu, Y., Zhou, P., Zhu, W.: Five-port optical router for photonic networks-on-chip. Opt. Exp. 19, 20258–20268 (2011b)

    Article  ADS  Google Scholar 

  • Lee, B.G., Biberman, A., Dong, P., Lipson, M., Bergman, K.: Alloptical comb switch for multiwavelength message routing in silicon photonic networks. IEEE Photon. Technol. Lett. 20, 767–769 (2008)

    Article  ADS  Google Scholar 

  • Marcatili, E.A.J.: Dielectric rectangular waveguide and directional coupler for integrated optics. Bell Syst. Technol. J. 48, 2071–2102 (1969a)

    Article  Google Scholar 

  • Marcatili, E.A.J.: Bends in optical dielectric guides. Bell Syst. Technol. J. 48, 2103–2132 (1969b)

    Article  Google Scholar 

  • Melloni, A., Carniel, F., Costa, R., Martinelli, M.: Determination of bend mode characteristics in dielectric waveguides. J. Lightwave Technol. 19, 571–577 (2001)

    Article  ADS  Google Scholar 

  • Miller, A.B.: Device requirements for optical interconnects to silicon chips. Proc. IEEE 97, 1166–1185 (2009)

    Article  Google Scholar 

  • Min, R., Ji, R.Q., Chen, Q.S., Zhang, L., Yang, L.: A universal method for constructing N-port nonblocking optical router for photonic networks-on-chip. J. Lightwave Technol. 30, 3736–3741 (2012)

    Article  ADS  Google Scholar 

  • Mo, K.H., Ye, Y.Y., Wu, X.W., Zhang, W., Liu, W.C., Xu, J.: A hierarchical hybrid optical-electronic network-on-chip. In: Computer Society Annual Symposium on VLSI pp. 327–332 (2010)

  • Pitois, C., Vukmirovic, S., Hult, A., Wiesmann, D., Robertsson, M.: Low-loss passive optical waveguides based on photo-sensitive poly(pentafluorostyrene-co-glycidyl methacrylate). Macromolecules 32, 2903–2909 (1999)

    Article  ADS  Google Scholar 

  • Shacham, A., Bergman, K., Carloni, L.P.: Photonic networks-on-chip for future generations of chip multiprocessors. IEEE Trans. Comput. 57, 1246–1260 (2008)

    Article  MathSciNet  Google Scholar 

  • Tan, X.F., Yang, M., Zhang, L., Jiang, Y.T., Yang, J.Y.: A generic optical router design for photonic networks-on-chips. J. Lightwave Technol. 30, 368–376 (2012)

    Article  ADS  Google Scholar 

  • Wang, R., Zheng, C.T., Song, Q., Liang, L., Ma, C.S., Cui, Z.C., Zhang, D.M.: Fourier analysis of a polymer directional coupler electro-optic switch with two-section cosine-transitive CPWG electrodes: a new theoretical view. Opt. Commun. 285, 1103–1112 (2012)

    Article  ADS  Google Scholar 

  • Xu, G.Y., Liu, Z.F., Ma, J., Liu, B.Y., Ho, S.T., Wang, L., Zhu, P.W., Marks, T.J., Luo, J.D., Jen, A.K.Y.: Organic electro-optic modulator using transparent conducting oxides as electrodes. Opt. Exp. 13, 7380–7385 (2005)

    Article  ADS  Google Scholar 

  • Yang, M., Green, M.J., Assefa, S., Van Campenhout, J., Lee, B.G., Jahnes, C.V., Doany, F.E., Schow, C.L.: Non-blocking 4\(\times \)4 electro-optic silicon switch for on-chip photonic networks. Opt. Exp. 19, 47–54 (2011)

    Article  ADS  Google Scholar 

  • Zheng, C.T., Ma, C.S., Yan, X., Zhang, D.M.: Design of a spectrum-expanded polymer Mach-Zehnder interferometer electro-optic switch using two phase-generating couplers. Appl. Phys. B 102, 831–840 (2011a)

    Article  ADS  Google Scholar 

  • Zheng, C.T., Ma, C.S., Cui, Z.C., Yan, X., Zhang, D.M., Tian, C.W.: Investigation on push-pull polymer Mach-Zehnder interferometer electro-optic switches using improved 3-D mode propagation analysis method. Opt. Quantum Electron. 42, 327–346 (2011b)

    Article  Google Scholar 

  • Zheng, C.T., Luo, Q.Q., Liang, L., Ma, C.S., Zhang, D.M.: Fourier modeling and numerical characterization on a high-linear bias-free polymer push-pull poled Y-fed coupler electro-optic modulator. IEEE J. Quantum Electron. 49, 652–660 (2013)

    Google Scholar 

Download references

Acknowledgments

The authors wish to express their gratitude to the National Natural Science Foundation Council of China (Nos. 61107021, 61177027 and 61077041), the Ministry of Education of China (Nos. 20110061120052 and 20120061130008), the Science and Technology Department of Jilin Province of China (No. 20130522161JH), the China Postdoctoral Science Foundation funded project (Nos. 20110491299 and 2012T50297), the Special Funds of Basic Science and Technology of Jilin University (No. 201103076).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan-Tao Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, QQ., Zheng, CT., Huang, XL. et al. Polymeric \(N\)-stage serial-cascaded four-port optical router with scalable \(3N\) channel wavelengths for wideband signal routing application. Opt Quant Electron 46, 829–849 (2014). https://doi.org/10.1007/s11082-013-9795-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-013-9795-9

Keywords

Navigation