Optical and Quantum Electronics

, Volume 46, Issue 1, pp 193–200 | Cite as

Numerical simulation of solar cells based on III–V nitride compounds

  • K. Ameur
  • Z. Benamara
  • H. Mazari
  • N. Benseddik
  • R. Khelifi
  • M. Mostefaoui
  • N. Benyahya
Article

Abstract

In this paper, we developed a numerical calculation program, using Turbo Pascal, to determine the current–voltage characteristics of a \(\hbox {N}^{+}\hbox {P}\) solar cells in order to find the main parameters influencing the conversion efficiency. We adopted a one-dimensional numerical model for the resolution of the three semiconductor equations, which are: the Poisson’s equation and the two continuity equations of electrons and holes. Our system of equations is written in term of \(\varphi ,\, \varphi _{n}\), and \(\varphi _{p}\), and it’s resolved using the finite difference method. This code enables us to draw the current density versus the voltage for different layer thicknesses, the conversion efficiency versus the minority carrier life time and the spectral response versus the wavelength. In order to compare the conversion efficiency of two different solar cells, we simulated a solar cell based on III–V nitride compounds \((\hbox {In}_\mathrm{x}\hbox {Ga}_{1-\mathrm{x}}\hbox {N})\) and a monocrystalline silicon solar cell.

Keywords

Solar cells Conversion efficiency Numerical modeling Poisson equation Continuity equations Finite difference 

References

  1. Ardebili, R.: Etude par simulation numérique des phénomènes de transport dans les semiconducteurs à relaxation. Thèse de doctorat, Université de Montpellier II. France (1992)Google Scholar
  2. Aziz, W.J., Ibrahim, K.: Simulation model of multi-junction \(\text{ In }_{\rm x}\text{ Ga }_{1-{\rm x}}\text{ N }\) solar cells. Int. J. Nanoelectron. Materials 3, 43–52 (2010)Google Scholar
  3. Bandic, Z.Z., Bridger, P.M., Piquette, E.C., McGill, T.C.: Minority carrier diffusion length and lifetime in GaN. Appl. Phys. Lett. 72(24), 3166–3168 (1998)ADSCrossRefGoogle Scholar
  4. Brown, G.F., Ager III, J.W., Walukiewicz, W., Wu, J.: Finite element simulations of compositionally graded InGaN solar cells. Sol. Energy Mater. Sol. Cells 94, 478–483 (2010)CrossRefGoogle Scholar
  5. Chen, F., Cartwright, A.N., Lu, H., Schaff, W.J.: Temperature dependence of carrier lifetimes in InN. Appl. Phys. Lett. 87, 212104 (1–3) (2005)Google Scholar
  6. D’Avanzo, D.C., Vanzi, M., Dutton, R.W.: One dimensional semiconductor device analysis (SEDAN). Technical report G-201-5 electronics laboratory, Standford University, USA (1979)Google Scholar
  7. Gummel, H.K.: A self-consistent iterative scheme for one-dimensional steady state transistor calculations. IEEE Trans. Electron. Devices ED–11, 455–465 (1964)CrossRefGoogle Scholar
  8. Jani, O., Ferguson, I., Honsberg, C., Kurtz, S.: Design and characterization of GaN/InGaN solar cells. Appl. Phys. Lett. 91, 132117 (2007)ADSCrossRefGoogle Scholar
  9. Levinshtein, M.E., Rumyantsev, S.L., Shur, M.S.: Properties of advanced semiconductor materials GaN, AlN, InN, BN, SiC, SiGe. Wiley, New York (2001)Google Scholar
  10. Mathieu, H.: Physique des semiconducteurs et des composants électroniques. Dunod, Paris (2001)Google Scholar
  11. Mnatsakanov, T.T., Levinshtein, M.E., Pomortseva, L.I., Yurkov, S.N., Simin, G.S., Asif Khan, M.: Carrier mobility model for GaN. Solid-State Electron. 47, 111–115 (2003)ADSCrossRefGoogle Scholar
  12. Quay, R.: Gallium Nitride Electronics. Springer, Berlin (2008)Google Scholar
  13. Selberherr, S.: Analysis and Simulation of Semiconductor Devices. Springer, Wien, New York (1984)CrossRefGoogle Scholar
  14. Simon, C.: Simulation numérique de la conduction électronique dans les dispositifs à semiconducteurs: discrétisation et mailleur auto-adaptatif. Thèse de doctorat, Université de Rennes I. France (1990)Google Scholar
  15. Sze, S.M.: Physics of Semiconductor Devices. Wiley, New York (1981)Google Scholar
  16. Vilbois, L.A., Cheknane, A., Bensaoula, A., Boney, C., Benouaz, T.: Simulation of a solar cell based on InGaN. Energy Procedia 18, 795–806 (2012)CrossRefGoogle Scholar
  17. Wen, B., et al.: Theoretical calculation of conversion efficiency of InGaN solar cells. Chin. J. Semicond. (in Chinese) 28, 1392–1395 (2007)Google Scholar
  18. Wu, J., Walukiewicz, W., Yu, K.M., Ager, J.W., Haller, E.E., Lu, H., Schaff, W.J., Saito, Y., Nanishi, Y.: Unusual properties of the fundamental band gap of InN. Appl. Phys. Lett. 80, 3967–3969 (2002)ADSCrossRefGoogle Scholar
  19. Wu, J., Walukiewicz, W., Yu, K.M., Shan, W., Ager, J.W., Haller, E.E., Lu, H., Schaff, W.J., Metzger, W.K., Kurtz, S.: Superior radiation resistance of \(\text{ In }1_{-{\rm x}}\text{ Ga }_{\rm x}\) alloys: full-solar-spectrum photovoltaic material system. J. Appl. Phys. 94(10), 6477–6482 (2003)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • K. Ameur
    • 1
  • Z. Benamara
    • 1
  • H. Mazari
    • 1
  • N. Benseddik
    • 1
  • R. Khelifi
    • 1
  • M. Mostefaoui
    • 1
  • N. Benyahya
    • 1
  1. 1.Laboratoire de Microélectronique AppliquéeUniversité de Sidi Bel AbbésSidi Bel AbbésAlgeria

Personalised recommendations