Skip to main content
Log in

Nanosecond polymer Mach-Zehnder interferometer electro-optic modulator using optimized micro-strip line electrode

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

A Mach-Zehnder interferometer (MZI) electro-optic (EO) modulator based on micro-strip line (MSL) electrode and guest-host EO polymer DR1/SU-8 is experimentally demonstrated. For achieving high response speed, electrode structure is especially optimized and fabrication technology is seriously controlled. The final characteristic impedance of electrode is about 49.4 Ω, and the difference between microwave index (1.5616) and lightwave index (1.6006) is also minimized. At 1,550 nm, the insertion loss and extinction ratio are 12 and 16 dB, respectively, and under switching operation, the rise time and fall time are 16.3 and 16.7 ns, respectively. A long-term monitoring over 2000 hours at room temperature (25 °C) is performed on switching response, and a novel mathematical modeling on response time variation is established using logistic function. The rise time and fall time are observed to change from the initial value of ~16 ns to the stable value of ~28 ns within 300 and 2000 hours, respectively. The device exhibits nanosecond response time by virtue of impedance-matched electrode, small index mismatch and serious control on fabrication process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balakrishnan M., Faccini M., Diemeer M.B.J., Klein E.J., Sengo G., Driessen A., Verboom W., Reinhoudt D.N.: Microring resonator based modulator made by direct photodefinition of an electro-optic polymer. Appl. Phys. Lett. 92, 153310 (2008)

    Article  ADS  Google Scholar 

  • Chen A., Chunyanov V., Zhang H., Garner S., Lee S.S., Steier W.H., Chen J., Wang F., Zhu J., He M., Ra Y., Mao S.S.H., Harper A.W., Dalton L.R., Fetterman H.R.: DC biased electro-optic polymer waveguide modulators with low half-wave voltage and high thermal stability. Opt. Eng. 38, 2000–2008 (1999)

    Article  ADS  Google Scholar 

  • Chen C., Zhang F., Wang H., Sun X., Wang F., Zhang D.: UV Curable Electro-Optic Polymer Modulator Based on Direct Photo definition Technique. IEEE J. Quantum Electron. 47, 959–964 (2011)

    Article  Google Scholar 

  • Edward P.D.: Handbook of optical constants of solids I, pp. 369–383. Academic Press, San Diego (1985)

    Google Scholar 

  • Eikichi Y., Yoshiki N., Kazuhiko A.: Analysis of multiple dielectric waveguide systems with extended point-matching method. MTT-S Int. Microw. Symp. Diqest 3, 119–121 (1983)

    Google Scholar 

  • Enami Y., Derose C.T., Mathine D., Loychik C., Greenlee C., Norwood R.A.: Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients. Nat. Photon. 1, 180–185 (2007a)

    Article  ADS  Google Scholar 

  • Enami Y., Mathine D., Derose C.T., Norwood R.A., Luo J., Jen A.K.Y.: Hybrid cross-linkable polymer sol-gel waveguide modulator with 0.65 V half wave voltage at 1,550 nm. Appl. Phys. Lett. 91, 093505 (2007b)

    Article  ADS  Google Scholar 

  • Enami Y., Mathine D., DeRose C.T., Norwood R.A., Luo J., Jen A.K.Y., Peyghambarian N.: Hybrid electro-optic polymer/sol-gel waveguide directional coupler modulatores. Appl. Phys. Lett. 94, 213513 (2009)

    Article  ADS  Google Scholar 

  • Lee M., Katz H.E., Erben C., Gill D.M., Gopalan P., Heber J.D.: Broadband modulation of light by using an electro-optic polymer. Science 298, 1401–1403 (2002)

    Article  ADS  Google Scholar 

  • Lin Y.H., Li J.K., Chu T.Y., Hsu H.K.: A bistable polarizer-free electro-optical modulator using a droplet manipulation on a liquid crystal and polymer composite film. Opt. Express 18, 10104–10111 (2010)

    Article  ADS  Google Scholar 

  • Lindsay G.A., Guenthner A.J., Wright M.E., Sanghadasa M., Ashley P.R.: Multi-month thermal aging of electro-optic polymer waveguides: Synthesis, fabrication, and relaxation modeling. Polymer 48, 6605–6616 (2007)

    Article  Google Scholar 

  • Liu H.F., Hou A.L, Liu Y.T., Zhang D.M., Chuai X.H., Yi M.B., Sun W.: Poled silica/DR1 films with thermally stability and large electro-optic coefficient applying in external probe tip. Chn. Phys. Lett. 23, 1486–1489 (2006)

    Article  ADS  Google Scholar 

  • Michel S., Zyss J., Ledoux-Rak I., Nguyen C.T.: High-performance electro-optic modulators realized with a commercial side-chain DR1-PMMA electro-optic copolymer. Proc. SPIE 7599, 759901 (2010)

    Article  Google Scholar 

  • Mortazavi M.A., Knoesen A., Kowel S.T., Henry R.A., Hoover J.M., Lindsay G.A.: Second-order nonlinear optical properties of poled coumaromethacrylate copolymers. Appl. Phys. B. 53, 287–295 (1991)

    Article  ADS  Google Scholar 

  • Park D.H., Lee C.H., Herman W.N.: Analysis of multiple reflection effects in reflective measurements of electro-optic coefficients of poled polymers in multilayer structures. Opt. Express 14, 8866–8884 (2006)

    Article  ADS  Google Scholar 

  • Pretre P., Meier U., Stalder U., Bosshard C., Günter P.: Relaxation processes in nonlinear optical polymers: a comparative study. Macromolecules 31, 1947–1957 (1998)

    Article  ADS  Google Scholar 

  • Ponmalar S., Sundaravadivelu S.: Design of ultra fast 2 × 2 electro-optic polymer waveguide modulator for protection in intelligent optical networks. J. Sci. Indus. Res. 70, 36–40 (2011)

    Google Scholar 

  • Wang M.H., Qi W., Yu H., Jiang X.Q., Yang J.Y.: Research of high speed optical modulator based on compound semiconductor. Chn. Sci. Bull. 54, 3679–3684 (2009)

    Article  Google Scholar 

  • Zheng C.T., Ma C.S., Yan X., Wang X.Y., Zhang D.M.: Analysis of response characteristics for polymer directional coupler electro-optic modulatores. Opt. Commun. 281, 5998–6005 (2008)

    Article  ADS  Google Scholar 

  • Zheng C.T., Ma C.S., Yan X., Wang X.Y., Zhang D.M.: Design of integrated 1 × 2, 1 × 4 low driving voltage polymer electro-optic modulatores based on Y-fed directional couplers. J. Mod. Opt. 56, 615–622 (2009a)

    Article  ADS  Google Scholar 

  • Zheng C.T., Ma C.S., Yan X., Wang X.Y., Zhang D.M.: Design of a polymer directional coupler electro-optic modulator using two-section reversed electrodes. Appl. Phys. B. 96, 95–102 (2009b)

    Article  ADS  Google Scholar 

  • Zheng C.T., Ma C.S., Yan X., Wang X.Y., Zhang D.M.: Optimal design and analysis of a high-speed, low-voltage polymer Mach-Zehnder interferometer electro-optic modulator. Opt. Laser Technol. 42, 457–464 (2010a)

    Article  ADS  Google Scholar 

  • Zheng C.T., Ma C.S., Yan X., Wang X.Y., Zhang D.M.: Analysis on skin-effect of a polymer shielded push-pull directional coupler electro-optic modulator. Appl. Phys. B. 98, 511–521 (2010b)

    Article  ADS  Google Scholar 

  • Zheng C.T., Ma C.S., Cui Z.C., Yan X., Zhang D.M., Tian C.W.: Investigation on push-pull polymer Mach-Zehnder interferometer electro-optic modulatores using improved 3-D mode propagation analysis method. Opt. Quant. Electron. 42, 327–346 (2011a)

    Article  Google Scholar 

  • Zheng C.T., Ma C.S., Yan X., Cui Z.C., Zhang D.M.: Design of a spectrum-expanded polymer Mach-Zehnder interferometer electro-optic modulator using two phase-generating couplers. Appl. Phys. B. 102, 831–840 (2011b)

    Article  ADS  Google Scholar 

  • Zhu N.H., Qiu W., Pun E.Y.B., Chung P.S.: Quasi-static analysis of shielded microstrip transmission lines with thick electrodes. IEEE Trans. Microw. Theory Tech. 45, 288–291 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan-Tao Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, CT., Zhang, LJ., Qv, LC. et al. Nanosecond polymer Mach-Zehnder interferometer electro-optic modulator using optimized micro-strip line electrode. Opt Quant Electron 45, 279–293 (2013). https://doi.org/10.1007/s11082-012-9629-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-012-9629-1

Keywords

Navigation