Skip to main content
Log in

Optical sensing of nanoparticles in the infrared by use of silica nanowires

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We numerically investigate an optical sensor in the infrared based on a Mach–Zehnder interferometer (MZI) assembled with two single-mode silica nanowires immersed in acetonitrile. We propose to use acetonitrile as the detecting solution because, in contrast to water which has very high losses in the infrared, it has negligible losses at important wavelengths of 1,300 and 1550 nm. By solving for the fundamental mode of a three-layer nanowire, we calculate the propagation constant difference between the sensing and reference arms at the output of the MZI optical sensor. For nanoparticles with a size of 12 nm and an index of refraction of 1.4, the sensitivity of the optical sensor becomes a maximum for a wire diameter of 1.23 μm. An optical sensor operating at a wavelength of 325 nm and using water as the detecting solution requires nanowires with a diameter of 240 nm, which is much more difficult to implement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen K.N., Bellamacina C.R., Ding X., Jeffery C.J., Mattos C., Petsko G.A., Ringe D.: An experimental approach to mapping the binding surfaces of crystalline proteins. J. Phys. Chem. 100, 2605–2611 (1996)

    Article  Google Scholar 

  • Allsop T., Neal R., Rehman S., Webb D.J., Mapps D., Bennion I.: Generation of infrared surface plasmon resonances with high refractive index sensitivity utilizing tilted fiber Bragg gratings. Appl. Opt. 46, 5456–5460 (2007)

    Article  ADS  Google Scholar 

  • Babu K.R., Douglas D.J.: Methanol-induced conformations of myoglobin at pH 4.0. Biochemistry 39, 14702–14710 (2000)

    Article  Google Scholar 

  • Barrelet C.J., Greytak A.B., Lieber C.M.: Nanowire photonic circuit elements. Nano Lett. 4, 1981–1985 (2004)

    Article  ADS  Google Scholar 

  • Bellissent-Funel M.C.: Hydration Processes in Biology. IOS Press, Amsterdam (1999)

    Google Scholar 

  • Bertie J.: Acetonitrile-water mixtures. J. Phys. Chem. 101, 4111–4119 (1997)

    Article  Google Scholar 

  • Bhatia V., Vengsarkar A.M.: Optical fiber long-period grating sensors. Opt. Lett. 21(9), 692–694 (1996)

    Article  ADS  Google Scholar 

  • Bonner G., Klibanov A.M.: Structural stability of DNA in nonaqueous solvents. Biotechnol. Bioeng. 68, 334–344 (2000)

    Article  Google Scholar 

  • Brambilla G., Finazzi V., Richardson D.J.: Ultra-low-loss optical fiber nanotapers. Opt. Express 12, 2258–2263 (2004)

    Article  ADS  Google Scholar 

  • Chong J.H., Shum P., Haryono H., Yohana A., Rao M.K., Lu C., Zhu Y.: Measurements of refractive index sensitivity using long-period grating refractometer. Opt. Commun. 229, 65–69 (2004)

    Article  ADS  Google Scholar 

  • Debackere P., Scheerlinck S., Bienstman P., Baets R.: Surface plasmon interferometer in silicon-on-insulator: novel concept for an integrated biosensor. Opt. Express 14, 7063–7072 (2006)

    Article  ADS  Google Scholar 

  • Fang X., Liao C.R., Wang D.N.: Femtosecond laser fabricated fiber Bragg grating in microfiber for refractive index sensing. Opt. Lett. 35(7), 1007–1009 (2010)

    Article  Google Scholar 

  • Fitzpatrick P.A., Ringe D., Klibanov A.M.: X-ray crystal structure of cross-linked subtilisin Carlsberg in water vs. acetonitrile. Biochem. Biophys. Res. Commun. 198, 675–681 (1994)

    Article  Google Scholar 

  • Foster M.A., Turner A.C., Lipson M., Gaeta A.L.: Nonlinear optics in photonic nanowires. Opt. Express 16(2), 1300–1320 (2008)

    Article  ADS  Google Scholar 

  • Han T., Liu Y.G., Wang Z., Zou B., Tai B., Liu B.: Avoided-crossing-based ultrasensitive photonic crystal fiber refractive index sensor. Opt. Lett. 35, 2061–2063 (2010)

    Article  ADS  Google Scholar 

  • Jha R., Villatoro J., Badenes G., Pruneri V.: Refractometry based on a photonic crystal fiber interferometer. Opt. Lett. 34, 617–619 (2009)

    Article  Google Scholar 

  • Klibanov A.M.: Answering the question: why did biocatalysis in organic media not take off in the 1930s?. Trends Biotechnol. 18, 85–86 (2000)

    Article  MathSciNet  Google Scholar 

  • Klocek P.: Handbook of Infrared Optical Materials. Marcel Dekker, New York (1991)

    Google Scholar 

  • Knubovets T., Osterhout J.J., Klibanov A.M.: Structure of lysozyme dissolved in neat organic solvents as assessed by NMR and CD spectroscopies. Biotechnol. Bioeng. 63, 242–248 (1999)

    Article  Google Scholar 

  • Law M., Sirbuly D.J., Johnson J.C., Goldberger J., Saykally R.J., Yang P.D.: Nanoribbon waveguides for subwavelength photonics integration. Science 305, 1269–1273 (2004)

    Article  ADS  Google Scholar 

  • Lee H.W., Schmidt M.A., Uebel P., Tyagi H., Joly N.Y., Scharrer M., Russell P.S.J.: Optofluidic refractive-index sensor in step-index fiber with parallel hollow micro-channel. Opt. Express 19, 8200–8207 (2011)

    Article  ADS  Google Scholar 

  • Leon-Saval S.G., Birks T.A., Wadsworth W.J., St J., Russell P.S.J., Mason M.W.: Supercontinuum generation in submicron fiber waveguides. Opt. Express 12, 2864–2869 (2004)

    Article  ADS  Google Scholar 

  • Liang W., Huang Y., Xu Y., Lee R.K., Yariv A.: Highly sensitive fiber Bragg grating refractive index sensors. Appl. Phys. Lett. 86, 151122–151124 (2005)

    Article  ADS  Google Scholar 

  • Lou J., Tong L., Ye Z.: Modeling of silica nanowires for optical sensing. Opt. Express 13(6), 2135–2140 (2005)

    Article  ADS  Google Scholar 

  • Ma L., Katagiri T., Matsuura Y.: Surface-plasmon resonance sensor using silica-core Bragg fiber. Opt. Lett. 34, 1069–1071 (2009)

    Article  ADS  Google Scholar 

  • Mattos C., Ringe D.: Proteins in organic solvents. Curr. Opin. Struct. Biol. 11, 761–764 (2001)

    Article  Google Scholar 

  • Oppenheim S.F., Studts J.M., Fox B.G., Dordick J.S.: Aromatic hydroxylation catalyzed by toluene 4-monooxygenase in organic solvent/aqueous buffer mixtures. Appl. Biochem. Biotechnol. 90, 187–197 (2001)

    Article  Google Scholar 

  • Phan Huy M.C., Laffont G., Dewynter V., Ferdinand P., Roy P., Auguste J.L., Pagnoux D., Blanc W., Dussardier B.: Three-hole microstructured optical fiber for efficient fiber Bragg grating refractometer. Opt. Lett. 32, 2390–2392 (2007)

    Article  ADS  Google Scholar 

  • Poulton, C.G., Schmidt, M.A., Pearce, G.J., Kakarantzas, G., Russell, P.S.J.: Numerical study of guidedmodes in arrays of metallic nanowires. Opt. Lett. 32, 1647–1649 (2007)

    Article  ADS  Google Scholar 

  • Rindorf L., Bang O.: Highly sensitive refractometer with a photonic-crystal-fiber long-period grating. Opt. Lett. 33, 563–565 (2008)

    Article  ADS  Google Scholar 

  • Schiebener P., Straub J., Sengers J.M.H.L., Gallagher J.S.: Refractive index of water and steam as function of wavelength, temperature and density. J. Phys. Chem. Ref. Data 19, 677–717 (1990)

    Article  ADS  Google Scholar 

  • Schmitke J.L., Stern L.J., Klibanov A.M.: The crystal structure of subtilisin Carlsberg in anhydrous dioxane and its comparison with those in water and acetonitrile. Proc. Natl. Acad. Sci. USA 94, 4250–4255 (1997)

    Article  ADS  Google Scholar 

  • Snyder A.W., Love J.D.: Optical waveguide theory. Chapman and Hall, New York (1983)

    Google Scholar 

  • Tong L., Gattass R.R., Ashcom J.B., He S., Lou J., Shen M., Maxwell I., Mazur E.: Subwavelength diameter silica wires for low-loss optical wave guiding. Nature 426, 816–819 (2003)

    Article  ADS  Google Scholar 

  • Tong L., Hu L., Zhang J., Qiu J., Yang Q., Lou J., Shen Y., He J., Ye Z.: Photonic nanowires directly drawn from bulk glasses. Opt. Express 12, 82–87 (2006)

    Article  ADS  Google Scholar 

  • Wu D.K.C., Kuhlmey B.T., Eggleton B.J.: Ultrasensitive photonic crystal fiber refractive index sensor. Opt. Lett. 34, 322–324 (2009)

    Article  Google Scholar 

  • Wu J., Day D., Gu M.: A microfluidic refractive index sensor based on an integrated three-dimensional photonic crystal. Appl. Phys. Lett. 92, 071108–071110 (2008)

    Article  ADS  Google Scholar 

  • Yennawar N.H., Yennawar H.P., Farber G.K.: X-ray crystal structure of gamma-chymotrypsin in hexane. Biochemistry 33, 7326–7336 (1994)

    Article  Google Scholar 

  • Zhang R., Teipel J., Zhang X., Nau D., Giessen H.: Group velocity dispersion of tapered fibers immersed in different liquids. Opt. Express 12, 1700–1707 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mohebbi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohebbi, M. Optical sensing of nanoparticles in the infrared by use of silica nanowires. Opt Quant Electron 45, 21–33 (2013). https://doi.org/10.1007/s11082-012-9599-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-012-9599-3

Keywords

Navigation