Skip to main content
Log in

High accuracy modal analysis and beam propagation method for nano-waveguides

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

A mapped barycentric Chebyshev differentiation matrix (MBCDM) method is proposed for the high-accuracy modal analysis of waveguides and a new beam propagation method (BPM) based on this differentiation matrix is developed. Compared with the commonly used finite difference or finite element based modal analysis and BPM methods, MBCDM is much more accurate and efficient for the computation of guided, evanescent and leaky modes of 2D planar waveguides, 3D rectangular waveguides and circular fibers, and MBCDM-BPM is capable of simulating the propagation of all these modes. The high accuracy of MBCDM and MBCDM-BPM is particularly essential for the nanoscale waveguides with strong discontinuities, where evanescent waves play a central role and high-resolution solutions are necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Almeida V.R., Xu Q., Barrios C.A., Lipson M.: Guiding and confining light in void nanostructure. Opt. Lett. 29, 1209–1211 (2004)

    Article  ADS  Google Scholar 

  • Bhattacharya D., Sharma A.: Split step non-paraxial finite defference method for 3D scalar wave propagation. Opt. Quantum Electron. 39, 865–876 (2007)

    Article  Google Scholar 

  • Chiou Y.P., Du C.H.: Arbitrary-order interface conditions for slab structures and their applications in waveguide analysis. Opt. Exp. 18, 4088–4102 (2010)

    Article  ADS  Google Scholar 

  • Clark C.D. III, Thomas R.J.: Wide-angle split-step spectral method for 2D or 3D beam propagation. Opt. Quantum Electron. 41, 849–857 (2009)

    Article  Google Scholar 

  • Deshmukh I., Liu Q.H.: Pseudospectral beam-propagation method for optical waveguides. IEEE Photon. Technol. Lett. 15, 60–62 (2003)

    Article  ADS  Google Scholar 

  • Dionne J.A., Lezec H.J., Atwater H.A.: Highly confined photon transport in subwavelength metallic slot waveguides. Nano Lett. 6, 1928–1932 (2006)

    Article  ADS  Google Scholar 

  • Fujisawa T., Koshiba M.: All-optical logic gates based on nonlinear slot-waveguide couplers. J. Opt. Soc. Am. B. 23, 684–691 (2006)

    Article  ADS  Google Scholar 

  • Girard C.: Near fields in nanostructures. Rep. Prog. Phys. 68, 1883–1933 (2005)

    Article  ADS  Google Scholar 

  • Hadley G.R.: Wide-angle beam propagation using Padé approximant operators. Opt. Lett. 17, 1426–1428 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  • Huang C.C., Huang C.C.: A novel wide-angle beam propagation method based on the spectral collocation scheme for computing titled waveguides. IEEE Photon. Technol. Lett. 17, 1872–1874 (2005)

    Article  ADS  Google Scholar 

  • Ji, Y., Yun, B.F., Hu, G.H., Cui, Y.P.: Analysis of nanostructural waveguides using fourth-order accurate finite difference methods with nonuniform scheme. Chin. Phys. Lett. 26, 014205-1–3 (2009)

    Google Scholar 

  • Kawata, S., Ohtsu, M., Irie, M. (eds): Nano-Optics. Springer, Berlin, Heidelberg (2002)

    Google Scholar 

  • Lapchuk A.S., Shin D.H., Jeong H.S., Kyong C.S., Shin D.: Mode propagation in optical nanowaveguides with dielectric cores and surrounding metal layers. Appl. Opt. 44, 7522–7531 (2005)

    Article  ADS  Google Scholar 

  • Le K.Q., Godoy-Rubio R., Bienstman P., Hadley G.R.: The complex Jacobi iterative method for threedimensional wide-angle beam propagation. Opt. Exp. 16, 17021–17030 (2008)

    Article  ADS  Google Scholar 

  • Lu W.T., Lu Y.Y.: Waveguide mode solver based on Neumann-to-Dirichlet operators and boundary integral equations. J. Comput. Phys. 231, 1360–1371 (2012)

    Article  ADS  MATH  Google Scholar 

  • Lu Y.Y.: Some techniques for computing wave propagation in optical waveguides. Commun. Comput. Phys. 1, 1056–1075 (2006)

    Google Scholar 

  • Novotny L., Hecht B.: Principles of Nano-Optics. Cambridge University Press, UK (2006)

    Book  Google Scholar 

  • Qi Z., Li T., Zhu S.N.: High-confined second harmonic generation in nano-scale slot waveguides. J. Phys. D Appl. Phys. 41, 1–5 (2008)

    Google Scholar 

  • Sharma A., Agrawal A.: New method for nonparaxial beam propagation. J. Opt. Soc. Am. A 21, 1082–1087 (2004)

    Article  ADS  Google Scholar 

  • Stowell D., Tausch J.: Variational Formulation for guided and leaky modes in multilayer dielectric waveguides. Commun. Comput. Phys. 7, 564–579 (2010)

    Google Scholar 

  • Sujecki S.: Arbitrary truncation order three-point finite difference method for optical waveguides with stepwise refractive index discontinuities. Opt. Lett. 35, 4115–4117 (2010)

    Article  ADS  Google Scholar 

  • Xu C.L., Huang W.P.: Finite-difference beam propagation method for guide-wave optics. PIER 11, linebreak 1–49 (1995)

    MathSciNet  Google Scholar 

  • Yang R., Wahsheh R.A., Lu Z., Abushagur M.A.G.: Efficient light coupling between dielectric slot waveguide and plasmonic slot waveguide. Opt. Lett. 35, 649–651 (2010)

    Article  Google Scholar 

  • Zhang X.C.: Mapped barycentric Chebyshev differentiation matrix method for the solution of regular Sturm-Liouville problems. Appl. Math. Comput. 217, 2266–2276 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu J.X., Zhang X.C., Song R.C.: A unified mode solver for optical waveguides based on mapped barycentric rational chebyshev differentiation matrix. J. Lightwave Technol. 28, 1802–1810 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-Cang Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mo, GL., Zhang, XC. High accuracy modal analysis and beam propagation method for nano-waveguides. Opt Quant Electron 44, 459–470 (2012). https://doi.org/10.1007/s11082-012-9570-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-012-9570-3

Keywords

Navigation