Skip to main content
Log in

The effects of non-Kolmogorov turbulence on the orbital angular momentum of a photon-beam propagation in a slant channel

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We analyze the effects of non-Kolmogorov turbulence on the orbital angular momentum of a photon-beam propagation through atmosphere. The probability models of the orbital angular momentum crosstalk for single photons propagation in the channel with the non-Kolmogorov turbulence aberration have been established. It is found that the crosstalk among orbits increases as the orbital angular momentum quantum number of launch beam rises, the ground turbulence strength \({C_n^{2} \left( 0 \right)}\) enhances or the non-Kolmogorov parameter α of turbulence-channel increases. As non-Kolmogorov parameter α approaches 4, the crosstalk probabilities among neighbor orbits are approximately the same.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aksenov V.P.: Fluctuations of orbital angular momentum of vortex laser-beam in turbulent atmosphere. Proc. SPIE 5892, 58921Y-1-8 (2005)

    Google Scholar 

  • Allen L., Beijersbergen M.W., Spreeuw R.J.C., Woerdman J.P.: Orbital angular-momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992)

    Article  ADS  Google Scholar 

  • Andrews L.C., Phillips R.L.: Laser Beam Propagation Through Random Media. SPIE, Washington (1998)

    Google Scholar 

  • Anguita J.A., Neifeld M.A., Vasic B.V.: Turbulence-induced channel crosstalk in an orbital angular momentum-multiplexed free-apace optical link. Appl. Opt. 47(13), 2414–2429 (2008)

    Article  ADS  Google Scholar 

  • Berdja A.: On the DIMM interpretation of non-Kolmogorov turbulence in the atmospheric surface layer. Mon. Not. R. Astron. Soc. 409(2), 722–726 (2010)

    Article  ADS  Google Scholar 

  • Glenn A.T., Robert W.B.: Influence of atmospheric turbulence on the propagation of quantum states of light carrying orbit angular momentum. Opt. Lett. 34(2), 142–144 (2009)

    Article  Google Scholar 

  • Molina-Terriza, G., Torres, J.P., Torner, L.: Management of the angular momentum of light: preparation of photons in multidimensional vector states of angular momentum. Phys. Rev. Lett. 88, 257901-1-4 (2002)

    Google Scholar 

  • Paterson C.: Atmospheric turbulence and free-space optical communication using orbital angular momentum of single photons. SPIE 5572, 187–198 (2004)

    Article  ADS  Google Scholar 

  • Paterson, C.: Atmospheric turbulence and orbital angular momentum of single photons for optical communication. Phys. Rev. Lett. 94, 153901-1-4 (2005)

    Google Scholar 

  • Stribling, B.E., Welsh, B.M., Roggemann, M.C.: Optical propagation in non-Kolmogorov atmospheric turbulence. Proc. SPIE. 2471, 2471-22-1-7 (1995)

    Google Scholar 

  • Toselli I., Andrews L.C., Phillips R.L., Ferrero V.: Free-space optical system performance for laser beam propagation through non-Kolmogorov turbulence. Opt. Eng. 47(2), 026003-1-9 (2008)

    Article  ADS  Google Scholar 

  • Uribe-Patarroyo N., Alvarez-Herrero A., Belenguer T.: Measurement of the quantum superposition state of an imaging ensemble of photons prepared in orbital angular momentum states using a phase-diversity method. Phys. Rev. A 81(5), 053822-1-6 (2010a)

    Article  ADS  Google Scholar 

  • Uribe-Patarroyo N., Alvarez-Herrero A., Belenguer T.: A comprehensive approach to deal with instrumental optical aberrations effects in high-accuracy photon’s orbital angular momentum spectrum measurements. Opt. Express 18(20), 21111–21120 (2010b)

    Article  ADS  Google Scholar 

  • Uribe-Patarroyo N., Alvarez-Herrero A., López Ariste A., Asensio Ramos A., Belenguer T., Manso Sainz R., LeMen C., Gelly B.: Detecting photons with orbital angular momentum in extended astronomical objects: application to solar observations. Astron. Astrophys. 526(A56), 1–5 (2011)

    Google Scholar 

  • Vetelino F.E.S., Morgana R.J.: Model validation of turbulence effects on orbital angular momentum of single photons for optical communication. Proc. SPIE 7685, 76850R-1-10 (2010)

    Google Scholar 

  • Vetelino F.E.S., Morgan R.J.: Orbital angular momentum receiver bandwidth for laser communications systems operating in atmospheric turbulence. Proc. SPIE 8038, 80380L (2011)

    Article  Google Scholar 

  • Wang J., Jia J., Xu J., Wang Y., Zhang Y.: The probability of orbital angular momentum states of single photons with Z-tilt corrected residual aberration in a slant path turbulent atmosphere. Optik 122(11), 996–999 (2011)

    Article  ADS  Google Scholar 

  • Wheelon A.D.: Electromagnetic Scintillation II. Weak Scattering. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  • Zhang Y., Cang J.: Effects of turbulent aberrations on probability distribution of orbital angular momentum for optical communication. Chin. Phys. Lett. 26(7), 074220-1-4 (2009)

    ADS  Google Scholar 

  • Zhang Y., Wang Y., Xu J., Wang J., Jia J.: Orbital angular momentum crosstalk of single photons propagation in a slant non-Kolmogorov turbulence channel. Opt. Commun. 284(5), 1132–1138 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yixin Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheng, X., Zhang, Y., Wang, X. et al. The effects of non-Kolmogorov turbulence on the orbital angular momentum of a photon-beam propagation in a slant channel. Opt Quant Electron 43, 121–127 (2012). https://doi.org/10.1007/s11082-011-9512-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-011-9512-5

Keywords

Navigation