Skip to main content
Log in

Highly efficient ARC less InGaP/GaAs DJ solar cell numerical modeling using optimized InAlGaP BSF layers

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

An effective BSF is a key structural element for an efficient solar cell, either in a multi-junction or in a single-junction device. In this paper, two important materials AlGaAs and InAlGaP with their varied thickness (i.e. 0.05–1.0) μm both for top BSF and bottom BSF cells are investigated using the computational numerical modeling TCAD tool Silvaco ATLAS. It has been found that under the current matching condition with the relatively thinner (30 nm) top BSF layer and the thicker (1,000 nm) bottom BSF layer, the cell exhibit an overall enhancement of short-circuit current density Jsc and open circuit voltage Voc thereby improving the overall efficiency of the cell. A wide band gap material In0.5(Al0.7 Ga0.3)0.5P is proved to be a better choice for both window and BSF layer by increasing 6.2% more efficiency than using other widely used Al0.7 Ga0.3 As material under the same cell configuration because of its high photo generation rate. For this optimized cell structure, the maximum Jsc = 16.10 mA/cm2, Voc = 2.392V, and fill factor = 87.52% are obtained under AM1.5G illumination, exhibiting a maximum conversion efficiency of 32.1964% (1 sun) and 36.6781% (1,000 suns). This work reports the Influence of different BSF material and structures on the characteristics and efficiency of Multi-Junction solar cells. The detail photo-generation rates and EQE in this optimized ARC less DJ solar cell structure are also observed. The major stages of the modeling are explained and the simulation results are validated with published experimental data to demonstrate the accuracy of our results produced by the model utilizing this technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adachi S., Kato H., Moki A., Ohtsuka K.: Refractive index of (AlxGa1-x)0.5In0.5P quaternary alloys. J. Appl. Phys. 75(1), 478–480 (1994)

    Article  ADS  Google Scholar 

  • Aspnes D.E., Kelso S.M., Logan R.A., Bhat R.: Optical properties of AlxGa1-xAs alloy of same band-gap. J. Appl. Phys. 60(2), 754–767 (1986)

    Article  ADS  Google Scholar 

  • Burnett, B.: The basic physics and design of III–V multijunction solar cells. Available: http://photochemistry.epfl.ch/EDEY/III-V_physics.pdf [Accessed May. 18, 2010] (2002)

  • Cavicchi, B., Krut, D., Lillington, D., Kurtz, S., Olson, J.: Design and evaluation of dual-junction GaInP/GaAs solar cells for space. In: 22nd IEEE PVSC, pp. 63–67 (1991)

  • Geisz J.F., Friedman D.J., Ward J.S., Duda A., Olavarria W.J., Moriarty T.E., Kiehl J.T., Romero M.J., Norman A.G., Jones K.M.: 40.8% Efficient inverted triple-junction solar cell with two independently metamorphic junctions. Appl. Phys. Lett. 93(123505), 1–3 (2008)

    Google Scholar 

  • Green M.A.: Solar cell fill factors: general graph and empirical expressions. Solid-State Electron. 24(8), 788–789 (1981)

    Article  ADS  Google Scholar 

  • Hutchby, J.A., Markunas, R.J., Bedair, S.M.: Material aspects of the fabrication of multijunction solar cells. In: Proceedings of the 14th Critical Reviews of Technology Conference. Arlington, VA, pp. 40–61 (1985)

  • Karam N.H. et al.: Development and characterization of high-efficiency Ga/sub 0.5/In/sub 0.5/P/GaAs/Ge dual- and triple-junction solar cells. IEEE Trans. Electron Devices 46(10), 2116–2125 (1999)

    Article  ADS  Google Scholar 

  • Kato H., Adachi S., Nakanish H., Ohtsuka K.: Optical properties of (AlxGa1-x) 0.5In0.5P quaternary alloys. Jpn. J. Appl. Phys. 33(1), 186–192 (1994)

    Article  ADS  Google Scholar 

  • King, R.R., Karam, N.H., Ermer, J.H., Haddad, N., Colter, P., Isshiki, T., Yoon, H., Cotal, H.L., Joslin, D.E., Krut, D.D., Sudharsanan, R., Edmondson, K., Cavicchi, B.T., Lillington, D.R.: Next generation, high-efficiency III–V multi-junction solar cells. In: Photovoltaic Specialists Conference. Conference Record of the 28th IEEE, pp. 998–1001 (2000)

  • Lee H.-Y., Lee C.-T.: The investigation for various treatments of InAlGaP Schottky diodes. In: Proceedings of the 8th international conference on electronic materials. IUMRS-ICEM 23(1–2), 99–102 (2002)

    MATH  Google Scholar 

  • Leem J.W., Lee Y.T., Yu J.S.: Optimum design of InGaP/GaAs dual-junction solar cells with different tunnel diodes. Opt. Quantum Electron. 41(8), 605–612 (2010)

    Article  Google Scholar 

  • Lillington, D., Cotal, H., Ermer, J., Friedman, D., Moriarty, T., Duda, A.: A 32.3% efficient triple junction GaInP/sub 2//GaAs/Ge concentrator solar cells. In: Energy Conversion Engineering Conference and Exhibit, 2000. (IECEC) 35th Intersociety, vol. 1, pp. 516–521 (2000)

  • Lindholm F.A., Fossum J.G., Burgess E.L.: Application of the superposition principle to solar-cell analysis. IEEE Trans. Electron Devices 26(3), 165–171 (1979)

    Article  ADS  Google Scholar 

  • Lueck M.R., Andre C.L., Pitera A.J., Lee M.L., Fitzgerald E.A., Ringel S.A.: Dual junction GaInP/GaAs solar cells grown on metamorphic SiGe/Si substrates with high open circuit voltage. IEEE Electron. Device Lett. 27(3), 142–144 (2006)

    Article  ADS  Google Scholar 

  • Lundstrom M., Shuelke R.: Numerical analysis of heterostructure semiconductor devices. IEEE Trans. Electron Devices 30, 1151–1159 (1983)

    Article  ADS  Google Scholar 

  • Mandelkorn, J., Lamneck, J. H. Jr.: Simplified fabrication of back surface electric field silicon cells and novel characteristic of such cells. In: Conference on Rec. 9th IEEE Photovoltaic Spec. Conference, p. 66. IEEE, New York (1972)

  • Morrison R.E.: Reflectivity and optical constants of indium arsenide, indium antimonide, and gallium arsenide. Phys. Rev. 124(5), 1314–1317 (1961)

    Article  ADS  Google Scholar 

  • NREL’s Renewable Resource Data Center. http://rredc.nrel.gov/solar/spectra (2010)

  • Sato S., Miyamoto H., Imaizumi M., Shimazaki K., Morioka C., Kawano K., Ohshima T.: Degradation modeling of InGaP/GaAs/Ge triple-junction solar cells irradiated with various-energy protons. Solar Energy Mater. Sol. Cells 93(6–7), 768–773 (2009)

    Article  Google Scholar 

  • SILVACO Data Systems Inc.: Silvaco ATLAS User’s Manual (2009)

  • SOPRA. http://www.sopra-sa.com. Accessed on 15 june 2010 (2009)

  • Sze S.M.: Physics of semiconductor devices, 2nd edn. Wiley 811(812), 811–812 (1981)

    ADS  Google Scholar 

  • Vurgaftman I., Meyer J.R., Ram-Mohan L.R.: Band parameters for III–V semiconductors and their alloys. J. Appl. Phys. 89(11), 5815–5875 (2001)

    Article  ADS  Google Scholar 

  • Wojtczuk, S.J., Vernon, S.M., Michael, M.: Sanfacon “COMPARISON OF WINDOWS FOR P-ON-N InGaP SOLAR CELLS” IEEE, pp. 655–658 (1993)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khomdram Jolson Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, K.J., Sarkar, S.K. Highly efficient ARC less InGaP/GaAs DJ solar cell numerical modeling using optimized InAlGaP BSF layers. Opt Quant Electron 43, 1–21 (2012). https://doi.org/10.1007/s11082-011-9499-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-011-9499-y

Keywords

Navigation