Skip to main content

Quantum well intermixed waveguide grating

An Erratum to this article was published on 28 January 2012

Abstract

A waveguide grating have been designed suitable for Coarse Wavelength Division Multiplexing applications in which the refractive index is perturbed by the spatial tailoring of the band gap with fluorine ion implanted quantum well intermixing of the In0.95Ga0.05As0.10P0.90/InP multi quantum well structure. The gratings have been modeled using coupled mode theory and diffusion equations and Schrödinger wave equations are used to model quantum well energy while interdiffusion. A four channel waveguide grating from 1,550 to 1,610 nm at a span of 20 nm have been simulated with a channel bandwidth of 13 nm and a cross talk of −5 to −10 dB.

This is a preview of subscription content, access via your institution.

References

  • Adachi S.: Properties of Group-IV, II-V, and II-VI Semiconductors. Wiley, West Sussex (2005)

    Book  Google Scholar 

  • Anemogiannis E., Glytsis E.: Multilayer waveguides: efficient numerical analysis of general structures. J. Lightwave Technol. 10, 1344–1351 (1992)

    Article  ADS  Google Scholar 

  • Ateckle A.J., Chen P., Jackson H.E., Choo A.G., Cao X., Boyd J.T., Kumar M.: Review of focused ion beam implantation mixing for the fabrication of GaAs-based optoelectronics devices. J. Vac. Sci. Technol. B 12(6), 2570–2575 (1995)

    Google Scholar 

  • Barve A., Das U.: Design of a grating assisted lateral directional coupler by impurity induced quantum well intermixing of InGaAs/GaAs. IEEE J. Lightwave Technol. 25, 2448–2455 (2007)

    Article  ADS  Google Scholar 

  • Bhattacharya, P.: Semiconductor Optoelectronic Devices, Chapter 6. Prentice Hall of India Pvt. Ltd (1999)

  • Bradshaw, S.A., Marsh, J.H., Glew, R.W.: Very low loss waveguides formed by fluorine induced disordering of GaInAs/GaInAsP quantum wells. In: Fourth International Conference on Indium Phosphide and Related Materials. pp. 604–607 (1992)

  • Chang Y., Schulman J., Efron U.: Electro-optic effect in semiconductor superlattices. J. Appl. Phys. 62, 4533–4537 (1987)

    Article  ADS  Google Scholar 

  • Charbonneau S., Koteles E., Poole P., He J., Aers G., Haysom J., Buchanan M., Feng Y., Delage A., Yang F., Davis M., Goldberg R., Piva P., Mitchell I.: Photonic integrated circuits fabricate using ion implantation. IEEE J. Sel. Top. Quantum Electron. 4, 772–793 (1998)

    Article  Google Scholar 

  • Das U., Pathengey B., Osman Z., Anderson T.J.: F induced layer disordering of GaAs/InGaP quantum wells. Appl. Phys. Lett. 71, 7700–7702 (1997)

    Article  Google Scholar 

  • Delprat D., Ramdane A., Silvestre L., Ougazzaden A., Delorme F., Slempkes S.: 20 Gb/s integrated DBR laser-EA modulator by selective area growth for 1.55 μ m WDM applications. IEEE Photon. Technol. Lett. 9, 898–900 (1997)

    Article  ADS  Google Scholar 

  • Fancis C., Bradley M.A., Boucaud P., Julien F.H., Razeghi M.: Intermixing of GaInP/GaAs multiple quantum wells. Appl. Phys. Lett. 62, 178–180 (1993)

    Article  ADS  Google Scholar 

  • Flanders D.C., Koegelnik H., Schmidt R.N., Shank C.V.: Grating filters for thin-film optical waveguides. Appl. Phys. Lett. 24, 194–196 (1974)

    Article  ADS  Google Scholar 

  • Gandhi S.: VLSI Fabrication Principles. Wiley, New York (1983)

    Google Scholar 

  • Jacob B.: Calculation of reflection efficiency in waveguide DBR by spatially selective disordering of GaAs0.91P0.09/Al0.3Ga0.7As MQWs. IEEE LEOS 2, 55–56 (1998)

    Google Scholar 

  • Kato H., Inguchi N., Chika S., Nakayama M., Sano N.: Photoluminescence study of In x Al1-x As−GaAs strained-layer superlattices. J. Appl. Phys. 59, 588–592 (1986)

    Article  ADS  Google Scholar 

  • Kuindersma P.I., Mols P.P.G., Hosfad G.L.A.V.D., Cuypers G., Tomesen M., Dongen T.V., Binsma J.J.M.: Packaged, integrated DFB/EA-MOD for repeaterless transmission of 10 Gbit/s over 107 km standard fibre. Electron. Lett. 29, 1876–1878 (1993)

    Article  Google Scholar 

  • Lam J.C., Zhao L.: Design trade-offs for arrayed waveguide grating DWDM MUX/DEMUX. Proc. SPIE 3949, 90–98 (2000)

    Article  ADS  Google Scholar 

  • Livanos A.C., Katzir A., Yariv A., Hong C.S.: Chirped-grating demultiplexers in dielectric waveguides. Appl. Phys. Lett. 30, 519–521 (1977)

    Article  ADS  Google Scholar 

  • Marom E., Ramer O., Ruschin S.: Relation between normal-mode and coupled-mode analysis of parallel waveguides. IEEE J. Quantum. Electron. 20, 1311–1319 (1984)

    Article  ADS  Google Scholar 

  • Marsh J.H., Hansen S.I., Bryce A.C., De La Rue R.M.: Applications of neutral impurity disordering in fabricating low-loss optical waveguide and integrated waveguide deices. Opt. Quantum Electron. 23, S941–S957 (1991)

    Article  Google Scholar 

  • Marsh J.: Quantum well intermixing. Semicond. Sci. Technol. 8, 1136–1155 (1993)

    Article  ADS  Google Scholar 

  • Martin P., Skouri E.M., Chasseau L., Alibert C.: Accurate refractive index measurements of doped and undoped InP by a grating coupling technique. Appl. Phys. Lett. 67, 881–883 (1995)

    Article  ADS  Google Scholar 

  • Mitze T. et al.: CWDM transmitter module based on hybrid integration. IEEE J. Sel. Top. Quantum Electron. 12(5), 983–987 (2006)

    Article  Google Scholar 

  • McKee A., McLean C., Lullo G., Bryce A., Rue R., Marsh J., Button C.: Monolithic integration in InGaAs/InGaAsP multiple quantum well structures using laser intermixing. IEEE J. Quantum Electron. 33, 45–55 (1997)

    Article  ADS  Google Scholar 

  • Modiano E., Lin P.J.: Traffic grooming in WDM networks. IEEE Commun. Mag. 39, 124–129 (2001)

    Article  Google Scholar 

  • Nahory R.E., Pollack M.A., Jonston W.D. Jr: Temperature, bandgap, wavelength and doping dependence of peak gain coefficient parabolic model parameters for InGaAsP/InP semiconductor laser diodes. Appl. Phys. Lett. 33, 659–661 (1978)

    Article  ADS  Google Scholar 

  • Prasad, G.N.V.K.L.S.: Implantation energy dependence of interdiffusion of F impurity induced disordering GaAs0.91P0.09 /Al 0.3Ga0.7As QW’s. M.Tech. Thesis, LTP, IIT Kanpur (1991)

  • Reithmaier J.P.: Focused ion-beam implantation induced thermal quantum-well intermixing for monolithic optoelectronic device integration. IEEE J Sel. Top. Quantum Electron. 4, 595–605 (1998)

    Article  Google Scholar 

  • Si S., Yeo D., Yoon K., Kim S.: Area selectivity of InGaAsP-InP multiquantum well intermixing by impurity free vacancy diffusion. IEEE J. Sel. Top. Quantum Electron. 4, 619–623 (1998)

    Article  Google Scholar 

  • Srivastava R., Singh R.K., Singh Y.N.: Fiber-optic switch based on fiber Bragg gratings. IEEE Phot. Tech. Lett. 20, 1581–1583 (2008)

    Article  ADS  Google Scholar 

  • Tan, H.H., Jagdish, C., Gal, M.: Quantum well intermixing by proton irradiation. In: Proceedings LEOS’95, IEEE Laser and Electro-optics Society. Annual Meeting, vol. 2, pp. 94–95. San Francisco, USA (1995)

  • Tan H., Snider G.L., Chang L.D., Hu E.L.: A self-consistence solution Schrödinger-Poisson equations using a nonuniform mesh. Appl. Phys. 68, 4071–4076 (1990)

    Article  Google Scholar 

  • Wang S.: Principles of distributed-feedback and distributed Bragg-reflector lasers. IEEE J. Quantum Electron. 10, 413–427 (1974)

    Article  ADS  Google Scholar 

  • Yariv A.: Coupled-mode theory for guided wave optic. IEEE J. Quantum Electron. 9, 919–933 (1973)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh K. Sonkar.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s11082-012-9547-2.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sonkar, R.K., Das, U. Quantum well intermixed waveguide grating. Opt Quant Electron 42, 631–643 (2011). https://doi.org/10.1007/s11082-011-9486-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-011-9486-3

Keywords