Abstract
A waveguide grating have been designed suitable for Coarse Wavelength Division Multiplexing applications in which the refractive index is perturbed by the spatial tailoring of the band gap with fluorine ion implanted quantum well intermixing of the In0.95Ga0.05As0.10P0.90/InP multi quantum well structure. The gratings have been modeled using coupled mode theory and diffusion equations and Schrödinger wave equations are used to model quantum well energy while interdiffusion. A four channel waveguide grating from 1,550 to 1,610 nm at a span of 20 nm have been simulated with a channel bandwidth of 13 nm and a cross talk of −5 to −10 dB.
This is a preview of subscription content, access via your institution.
References
Adachi S.: Properties of Group-IV, II-V, and II-VI Semiconductors. Wiley, West Sussex (2005)
Anemogiannis E., Glytsis E.: Multilayer waveguides: efficient numerical analysis of general structures. J. Lightwave Technol. 10, 1344–1351 (1992)
Ateckle A.J., Chen P., Jackson H.E., Choo A.G., Cao X., Boyd J.T., Kumar M.: Review of focused ion beam implantation mixing for the fabrication of GaAs-based optoelectronics devices. J. Vac. Sci. Technol. B 12(6), 2570–2575 (1995)
Barve A., Das U.: Design of a grating assisted lateral directional coupler by impurity induced quantum well intermixing of InGaAs/GaAs. IEEE J. Lightwave Technol. 25, 2448–2455 (2007)
Bhattacharya, P.: Semiconductor Optoelectronic Devices, Chapter 6. Prentice Hall of India Pvt. Ltd (1999)
Bradshaw, S.A., Marsh, J.H., Glew, R.W.: Very low loss waveguides formed by fluorine induced disordering of GaInAs/GaInAsP quantum wells. In: Fourth International Conference on Indium Phosphide and Related Materials. pp. 604–607 (1992)
Chang Y., Schulman J., Efron U.: Electro-optic effect in semiconductor superlattices. J. Appl. Phys. 62, 4533–4537 (1987)
Charbonneau S., Koteles E., Poole P., He J., Aers G., Haysom J., Buchanan M., Feng Y., Delage A., Yang F., Davis M., Goldberg R., Piva P., Mitchell I.: Photonic integrated circuits fabricate using ion implantation. IEEE J. Sel. Top. Quantum Electron. 4, 772–793 (1998)
Das U., Pathengey B., Osman Z., Anderson T.J.: F induced layer disordering of GaAs/InGaP quantum wells. Appl. Phys. Lett. 71, 7700–7702 (1997)
Delprat D., Ramdane A., Silvestre L., Ougazzaden A., Delorme F., Slempkes S.: 20 Gb/s integrated DBR laser-EA modulator by selective area growth for 1.55 μ m WDM applications. IEEE Photon. Technol. Lett. 9, 898–900 (1997)
Fancis C., Bradley M.A., Boucaud P., Julien F.H., Razeghi M.: Intermixing of GaInP/GaAs multiple quantum wells. Appl. Phys. Lett. 62, 178–180 (1993)
Flanders D.C., Koegelnik H., Schmidt R.N., Shank C.V.: Grating filters for thin-film optical waveguides. Appl. Phys. Lett. 24, 194–196 (1974)
Gandhi S.: VLSI Fabrication Principles. Wiley, New York (1983)
Jacob B.: Calculation of reflection efficiency in waveguide DBR by spatially selective disordering of GaAs0.91P0.09/Al0.3Ga0.7As MQWs. IEEE LEOS 2, 55–56 (1998)
Kato H., Inguchi N., Chika S., Nakayama M., Sano N.: Photoluminescence study of In x Al1-x As−GaAs strained-layer superlattices. J. Appl. Phys. 59, 588–592 (1986)
Kuindersma P.I., Mols P.P.G., Hosfad G.L.A.V.D., Cuypers G., Tomesen M., Dongen T.V., Binsma J.J.M.: Packaged, integrated DFB/EA-MOD for repeaterless transmission of 10 Gbit/s over 107 km standard fibre. Electron. Lett. 29, 1876–1878 (1993)
Lam J.C., Zhao L.: Design trade-offs for arrayed waveguide grating DWDM MUX/DEMUX. Proc. SPIE 3949, 90–98 (2000)
Livanos A.C., Katzir A., Yariv A., Hong C.S.: Chirped-grating demultiplexers in dielectric waveguides. Appl. Phys. Lett. 30, 519–521 (1977)
Marom E., Ramer O., Ruschin S.: Relation between normal-mode and coupled-mode analysis of parallel waveguides. IEEE J. Quantum. Electron. 20, 1311–1319 (1984)
Marsh J.H., Hansen S.I., Bryce A.C., De La Rue R.M.: Applications of neutral impurity disordering in fabricating low-loss optical waveguide and integrated waveguide deices. Opt. Quantum Electron. 23, S941–S957 (1991)
Marsh J.: Quantum well intermixing. Semicond. Sci. Technol. 8, 1136–1155 (1993)
Martin P., Skouri E.M., Chasseau L., Alibert C.: Accurate refractive index measurements of doped and undoped InP by a grating coupling technique. Appl. Phys. Lett. 67, 881–883 (1995)
Mitze T. et al.: CWDM transmitter module based on hybrid integration. IEEE J. Sel. Top. Quantum Electron. 12(5), 983–987 (2006)
McKee A., McLean C., Lullo G., Bryce A., Rue R., Marsh J., Button C.: Monolithic integration in InGaAs/InGaAsP multiple quantum well structures using laser intermixing. IEEE J. Quantum Electron. 33, 45–55 (1997)
Modiano E., Lin P.J.: Traffic grooming in WDM networks. IEEE Commun. Mag. 39, 124–129 (2001)
Nahory R.E., Pollack M.A., Jonston W.D. Jr: Temperature, bandgap, wavelength and doping dependence of peak gain coefficient parabolic model parameters for InGaAsP/InP semiconductor laser diodes. Appl. Phys. Lett. 33, 659–661 (1978)
Prasad, G.N.V.K.L.S.: Implantation energy dependence of interdiffusion of F impurity induced disordering GaAs0.91P0.09 /Al 0.3Ga0.7As QW’s. M.Tech. Thesis, LTP, IIT Kanpur (1991)
Reithmaier J.P.: Focused ion-beam implantation induced thermal quantum-well intermixing for monolithic optoelectronic device integration. IEEE J Sel. Top. Quantum Electron. 4, 595–605 (1998)
Si S., Yeo D., Yoon K., Kim S.: Area selectivity of InGaAsP-InP multiquantum well intermixing by impurity free vacancy diffusion. IEEE J. Sel. Top. Quantum Electron. 4, 619–623 (1998)
Srivastava R., Singh R.K., Singh Y.N.: Fiber-optic switch based on fiber Bragg gratings. IEEE Phot. Tech. Lett. 20, 1581–1583 (2008)
Tan, H.H., Jagdish, C., Gal, M.: Quantum well intermixing by proton irradiation. In: Proceedings LEOS’95, IEEE Laser and Electro-optics Society. Annual Meeting, vol. 2, pp. 94–95. San Francisco, USA (1995)
Tan H., Snider G.L., Chang L.D., Hu E.L.: A self-consistence solution Schrödinger-Poisson equations using a nonuniform mesh. Appl. Phys. 68, 4071–4076 (1990)
Wang S.: Principles of distributed-feedback and distributed Bragg-reflector lasers. IEEE J. Quantum Electron. 10, 413–427 (1974)
Yariv A.: Coupled-mode theory for guided wave optic. IEEE J. Quantum Electron. 9, 919–933 (1973)
Author information
Authors and Affiliations
Corresponding author
Additional information
An erratum to this article can be found at http://dx.doi.org/10.1007/s11082-012-9547-2.
Rights and permissions
About this article
Cite this article
Sonkar, R.K., Das, U. Quantum well intermixed waveguide grating. Opt Quant Electron 42, 631–643 (2011). https://doi.org/10.1007/s11082-011-9486-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11082-011-9486-3