Skip to main content
Log in

Focal patterns of higher order hyperbolic-cosine-Gaussian beam with one optical vortex

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Intensity distribution in focal region plays an important role in many optical systems. In this paper, the focal patterns of higher order hyperbolic-cosine-Gaussian (HOCG) beam in focal plane were investigated. The HOCG beam contains one spiral optical vortex on its optical axis. Results show that the focal pattern can be altered considerably by beam order of the incident HOCG beam, and some novel focal patterns may occur, including foursquare focal pattern, cross-shaped dark focal focus, foursquare intensity peaks chain, and multiple intensity peaks array. Focal pattern evolution principle on increasing beam order also differs remarkably under condition of different topological charge of the optical vortex and displacement parameter associated with the cosh parts. And like topological charge and displacement parameter, the beam order and numerical aperture may affect focal pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arlt J., Padgett M.J.: Generation of a beam with a dark focus surrounded by regions of higher intensity: the optical bottle beam. Opt. Lett. 25, 191–193 (2000)

    Article  ADS  Google Scholar 

  • Ashkin A., Dziedzic J.M., Bjorkholm J.E., Chu S.: Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288–290 (1986)

    Article  ADS  Google Scholar 

  • Ashkin A., Dziedzic J.M., Yamane T.: Optical trapping and manipulation of single cells using infrared laser beams. Nature 330, 769–771 (1989)

    Article  ADS  Google Scholar 

  • Baumgartl J., Mazilu M., Dholakia K.: Optically mediated particle clearing using airy wavepackets. Nat. Photonics. 2, 675–678 (2008)

    Article  ADS  Google Scholar 

  • Casperson L.W., Tovar A.A.: Hermite–sinusoidal-Gaussian beams in complex optical systems. J. Opt. Soc. Am. A 15, 954–961 (1998)

    Article  ADS  Google Scholar 

  • Casperson L.W., Hall D.G., Tovar A.A.: Sinusoidal-Gaussian beams in complex optical systems. J. Opt. Soc. Am. A 14, 3341–3348 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  • Chu X.: Propagation of a cosh-Gaussian beam through an optical system in turbulent atmosphere. Opt. Express 15, 17613–17618 (2007)

    Article  ADS  Google Scholar 

  • Chu X.: The relay propagation of partially coherent cosh-Gausain-Schell beams in turbulent armosphere. Appl. Phys. B 98, 573–579 (2010)

    Article  ADS  Google Scholar 

  • Chu X., Ni Y., Zhou G.: Propagation of cosh-Gaussian beams diffracted by a circular aperture in turbulent atmosphere. Appl. Phys. B 87, 547–552 (2007)

    Article  ADS  Google Scholar 

  • Chu X., Qiao C., Feng X.: The effect of non-Kolmogorov turbulence on the propagation of cosh-Gaussian beam. Opt. Commun. 283, 3398–3403 (2010)

    Article  ADS  Google Scholar 

  • Cojoc D., Garbin V., Ferrari E., Businaro L., Romamato F., Fabrizio E.D.: Laser trapping and micro-manipulation using optical vortices. Microelectron. Eng. 77, 125–131 (2005)

    Article  Google Scholar 

  • Deng D.: Propagation properties of off-axis cosh Gaussian beam combinations through a first-order optical system. Phys. Lett. A. 333, 485–494 (2004)

    Article  ADS  MATH  Google Scholar 

  • D’Helon C., Dearden E.W., Rubinstein-Dunlop H., Heckenberg N.R.: Measurement of the optical force and trapping range of a single-beam gradient optical trap for micron-sized latex spheres. J. Mod. Opt. 41, 595–601 (1994)

    Article  ADS  Google Scholar 

  • Du X., Zhao D.: Elliptical cosh-Gaussian beams. Opt. Commun. 265, 418–424 (2006)

    Article  ADS  Google Scholar 

  • Eyyuboglu H.T., Bayka Y.: Average intensity and spreading of cosh-Gaussian laser beams in the turbulent atmosphere. Appl. Opt. 44, 976–983 (2005)

    Article  ADS  Google Scholar 

  • Ganic D., Gan X., Gu M.: Focusing of doughnut laser beams by a high numerical-aperture objective in free space. Opt. Express 11, 2747–2752 (2003)

    Article  ADS  Google Scholar 

  • Ganic D., Gan X., Gu M., Hain M., Somalingam S., Stankovic S., Tschudi T.: Generation of doughnut laser beams by use of a liquid-crystal cell with a conversion efficiency near 100%. Opt. Lett. 27, 1351–1353 (2002)

    Article  ADS  Google Scholar 

  • Gao X.: Focusing properties of the hyperbolic-cosine-Gaussian beam induced by phase plate. Phys. Lett. A. 360, 330–335 (2006)

    Article  ADS  MATH  Google Scholar 

  • Gao X., Li J.: Focal shift of apodized truncated hyperbolic-cosine-Gaussian beam. Opt. Commun. 273, 21–27 (2007)

    Article  ADS  Google Scholar 

  • Gao X., Wang J.: Focal evolution induced by combination of nonspiral and spiral phase plates. Chin. Opt. Lett. 5(5), 257–259 (2007)

    ADS  Google Scholar 

  • Gao X., Fei Z., Xu W., Gan F.: Focus splitting induced by a pure phase-shifting podizer. Opt. Commun. 239, 55–59 (2004)

    Article  ADS  Google Scholar 

  • Gao X., Wang J., Gu H., Hu S.: Focusing of hyperbolic-cosine-Gaussian beam with a non-spiral vortex. Optik 120, 201–206 (2009)

    Article  ADS  Google Scholar 

  • Gao X., Wang J., Sun L., Zhuang S.: Radially polarized hyperbolic-cosine-Gaussian beam. Optik 121, 658–664 (2010a)

    Article  ADS  Google Scholar 

  • Gao X., Zhan Q., Li J., Hu S., Wang J., Zhuang S.: Dark focal spot shaping of hyperbolic-cosine-Gaussian beam. J. Opt. Soc. Am. B 27, 696–702 (2010b)

    Article  ADS  Google Scholar 

  • Gao X., Li Z., Wang J., Sun L., Zhuang S.: Tunable gradient force of hyperbolic-cosine-Gaussian beam with vortices. Opt. Lasers. Eng. 48, 766–773 (2010c)

    Article  Google Scholar 

  • Garces-Chaves V., McGloin D., Melville H., Sibbett W., Dholakia K.: Simultaneous micromanipulation in multiple planes using a self reconstructing light beam. Nature 419, 145–147 (2002)

    Article  ADS  Google Scholar 

  • Gbur G., Visser T.D.: Can spatial coherence effects produce a local minimum of intensity at focus. Opt. Lett. 28, 1627–1629 (2003)

    Article  ADS  Google Scholar 

  • Grier D.G.: A revolution in optical manipulation. Nature 424, 810–816 (2003)

    Article  ADS  Google Scholar 

  • Gu M.: Advanced Optical Imaging Theory. Springer, Heidelberg (2000)

    Google Scholar 

  • He D., Yan H., Lü B.: Interaction of the vortex and edge dislocation embedded in a cosh-Gaussian beam. Opt. Commun. 282, 4035–4044 (2009)

    Article  ADS  Google Scholar 

  • Hricha Z., Belafhal A.: Focusing properties and focal shift in hyperbolic-cosine-Gaussian beams. Opt. Commun. 253, 242–249 (2005)

    Article  ADS  Google Scholar 

  • Ladavac K., Grier D.G.: Microoptomechanical pumps assembled and driven by holographic optical vortex arrays. Opt. Express 12, 1144–1149 (2004)

    Article  ADS  Google Scholar 

  • Lee W.M., Yuan X.C., Cheong W.C.: Optical vortex beam shaping by use of highly efficient irregular spiral phase plates for optical micromanipulation. Opt. Lett. 29, 1796–1798 (2004)

    Article  ADS  Google Scholar 

  • Li C., Lü B.: Transformation and spatial shaping of partially coherent cosh-Gaussian beams through an astigmatic lens. Optik 120, 374–378 (2009)

    Article  ADS  Google Scholar 

  • Li J., Chen Y., Xin Y., Xu S.: Propagation properties of higher-order cosh-Gaussian (HOCG) beams in uniaxial crystals orthogonal to the optical axis are studied. Eur. Phys. J. D. 57, 419–425 (2010)

    Article  ADS  Google Scholar 

  • MacDonald M.P., Spalding G.C., Dholakia K.: Microfluidic sorting in an optical lattice. Nature 426, 421–424 (2003)

    Article  ADS  Google Scholar 

  • Paterson L., MacDonald M.P., Arlt J., Sibbett W., Bryant P.E., Dholakia K.: Controlled rotation of optical trapped microscopic particles. Science 292, 912–914 (2001)

    Article  ADS  Google Scholar 

  • Patil S.D., Navare S.T., Takale M.V., Dongare M.B.: Self-focusing of cosh-Gaussian laser beams in a parabolic medium with linear absorption. Opt. Lasers. Eng. 47, 604–606 (2009)

    Article  Google Scholar 

  • Patil S.D., Takale M.V., Dongare M.B.: Propagation of Hermite-cosh-Gaussian laser beams in n-InSb. Opt. Commun. 281, 4776–4779 (2008a)

    Article  ADS  Google Scholar 

  • Patil S., Takale M., Fulari V., Dongare M.: Propagation of Hermite-cosh-Gaussian laser beams in non-degenerate germanium having space charge neutrality. J. Mod. Opt. 55, 3529–3535 (2008b)

    Article  ADS  MATH  Google Scholar 

  • Patil S.D., Takale M.V., Navare S.T., Dongare M.B.: Focusing of Hermite-cosh-Gaussian laser beams in collisionless magnetoplama. Laser. Part. Beams 28, 343–349 (2010)

    Article  ADS  Google Scholar 

  • Saghafi S., Sheppard C.J.: The beam propagation factor for higher order Gaussian beams. Opt. Commun. 153, 207–210 (1998)

    Article  ADS  Google Scholar 

  • Thourhout D.V., Roels J.: Optomechanical device actuation through the optical gradient force. Nat. Photonics. 4, 211–217 (2010)

    Article  ADS  Google Scholar 

  • Tovar A.A., Casperson L.W.: Production and propagation of Hermite–sinusoidal-Gaussian laser beams. J. Opt. Soc. Am. A 15, 2425–2432 (1998)

    Article  ADS  Google Scholar 

  • Visscher K., Brakenhoff G.J.: Theoretical study of optically induced forces on spherical particles in a single beam trap I: Rayleigh scatterers. Optik 89, 174–180 (1992)

    Google Scholar 

  • Zhou G.: Fractional Fourier transform of a higher-order cosh-Gausain beam. J. Mod. Opt. 56, 886–892 (2009)

    Article  ADS  MATH  Google Scholar 

  • Zhou G.: Generalized beam propagation factors of truncated partially coherent cosine-Gaussian and cosh-Gaussian beams. Opt. Laser. Tech. 42, 489–496 (2010)

    Article  ADS  Google Scholar 

  • Zhou G., Liu F.: Far field structural characteristics of cosh-Gaussian beam. Opt. Laser. Tech. 40, 302–308 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  • Zhou G., Zheng J.: Beam propagation of a higher-order cosh-Gaussian beam. Opt. Laser. Tech. 41, 202–208 (2009)

    Article  ADS  Google Scholar 

  • Zhu K., Tang H., Sun X.: Propagation of higher-order-cosh-Gaussian beams. Laser. Tech. 26, 364–366 (2002a) (in Chinese)

    Google Scholar 

  • Zhu K., Tang H., Wang X., Liu T.: Flattened light beams with an axial shadow generated through superposing cosh-Gaussian beams. Optik 113, 222–226 (2002b)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiumin Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, X., Wang, Q., Zhan, Q. et al. Focal patterns of higher order hyperbolic-cosine-Gaussian beam with one optical vortex. Opt Quant Electron 42, 367–380 (2011). https://doi.org/10.1007/s11082-011-9468-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-011-9468-5

Keywords

Navigation