Skip to main content
Log in

Invited Paper: Design and modeling of a transistor vertical-cavity surface-emitting laser

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

A multiple quantum well (MQW) transistor vertical-cavity surface-emitting laser (T-VCSEL) is designed and numerically modeled. The important physical models and parameters are discussed and validated by modeling a conventional VCSEL and comparing the results with the experiment. The quantum capture/escape process is simulated using the quantum-trap model and shows a significant effect on the electrical output of the T-VCSEL. The parameters extracted from the numerical simulation are imported into the analytic modeling to predict the frequency response and simulate the large-signal modulation up to 40 Gbps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alam M.A., Hybertsen M.S., Smith R.K., Baraff G.A.: Simulation of semiconductor quantum well lasers. IEEE Trans. Electron Devices 47, 1917 (2000)

    Article  ADS  Google Scholar 

  • Ahrenkiel R.K., Ellingson R., Metzger W.: Auger recombination in heavily carbon-doped GaAs. Appl. Phys. Lett. 78, 1879–1881 (2001)

    Article  ADS  Google Scholar 

  • Chuang S.L.: Efficient band structure calculations of strained quantum wells. Phys. Rev. B 43, 9649–9661 (1991)

    Article  ADS  Google Scholar 

  • Chen T.R., Utaka K., Yariv , Zhuang Y.H., Liu Y.Y., Yariv A.: Vertical integration of an InGaAsP/InP heterojunction bipolar transistor and a double heterostructure laser. Appl. Phys. Lett. 50, 874–876 (1987)

    Article  ADS  Google Scholar 

  • Crosslight Device Simulation Software—A General Description. Crosslight Software Inc. (2005)

  • Duan Z., Shi W., Chrostowski L., Huang X., Zhou N., Chai G.: Design and epitaxy of 1.5 μm InGaAsP-InP mqw material for a transistor laser. Opt. Express 18, 1501–1509 (2010)

    Article  ADS  Google Scholar 

  • Faraji B., Shi W., Pulfrey D.L., Chrostowski L.: Common-emitter and common-base small-signal operation of the transistor laser. Appl. Phys. Lett. 93, 143503 (2008)

    Article  ADS  Google Scholar 

  • Faraji B., Shi W., Pulfrey D.L., Chrostowski L.: Analytical modeling of the transistor laser. IEEE J. Quantum Electron. 15, 594–603 (2009)

    Article  Google Scholar 

  • Faraji, B., Jaeger, N.A.F., Chrostowski, L.: Modelling the effect of the feedback on the small signal modulation of the transistor laser. In: Proceedings of 23rd Annual Meeting of the IEEE Photonics Society, vol. 11, p. WX4. Denver, CO, USA (2010)

  • Feng M., Holonyak J.N., Walter G., Chan R.: Room temperature continuous wave operation of a heterojunction bipolar transistor laser. Appl. Phys. Lett. 87, 131103 (2005)

    Article  ADS  Google Scholar 

  • Hadley G.R., Lear K.L., Warren M.E., Choquette K.D., Scott J.W., Corzine S.W.: Comprehensive numerical modeling of vertical-cavity surface-emitting lasers. IEEE J. Quantum Electron. 32, 607–616 (1996)

    Article  ADS  Google Scholar 

  • Hsu C.F., Zory J.P.S., Wu C.-H.: Coulomb enhancement in InGaAs-GaAs quantum-well lasers. IEEE J. Sel. Top. Quantum Electron. 3, 158–165 (1997)

    Article  Google Scholar 

  • Jain F., Chung C., LaComb R., Gokhale M.: Resonant tunneling transistor lasers: a new approach to obtain multi-state switching and bistable operation. Int. J. Infrared Millim. Waves 14, 1311–1322 (1993)

    Article  ADS  Google Scholar 

  • Katz J., Bar-Chaim N., Chen P.C., Margalit S., Ury I., Wilt D., Yust M., Yariv A.: A monolithic integration of GaAs/GaAlAs bipolar transistor and heterostructure laser. Appl. Phys. Lett. 37, 211–213 (1980)

    Article  ADS  Google Scholar 

  • Koyama I.: Recent advances of VCSEL photonics. IEEE J. Lightwav. 24, 4502–4513 (2006)

    Article  Google Scholar 

  • Kulakovskii V.D., Andersson T.G., Butov L.V.: Band edge offset in strained In x Ga1-x As/GaAs quantum wells measured by high-excitation photoluminescence. Semicond. Sci. Technol. 8, 477–480 (1993)

    Article  ADS  Google Scholar 

  • Liu Y., Ng W.-C., Choquette K.D., Hess K.: Numerical investigation of self-heating effects of oxide-confined vertical-cavity surface-emitting lasers. IEEE J. Quantum Electron. 41, 15–25 (2005)

    Article  ADS  Google Scholar 

  • Mori Y., Shibata J., Sasai Y., Serizawa H., Kaijiwara T.: Operation principle of the InGaAsP/InP laser transistor. Appl. Phys. Lett. 47, 649–651 (1985)

    Article  ADS  Google Scholar 

  • Nawaz M., Permthammasin K.: A design analysis of a GaInP/GaInAs/GaAs-based 980 nm al-free pump laser using self-consistent numerical simulation. Semicond. Sci. Technol. 16, 877–884 (2001)

    Article  ADS  Google Scholar 

  • Nagarajan R.: Carrier transport effects in quantum well lasers: an overview. Opt. Quantum Electron. 26, S647–S666 (1994)

    Article  Google Scholar 

  • Palankovski V., Quay R.: Analysis and Simulation of Heterostructure Devices. Springer, New York (2004)

    Book  Google Scholar 

  • Piprek J., Lasaosa D., Pasquariello D., Bowers J.E.: Optimization of GaAs amplification photodetectors for 700% quantum efficiency. IEEE J. Sel. Top. Quantum Electron. 9, 776–782 (2003)

    Article  Google Scholar 

  • Piprek J., Tröger T., Schröter B., Kolodzey J., Ih C.S.: Thermal conductivity reduction in GaAs-AlAs distributed bragg reflectors. IEEE Photon. Technol. Lett. 10, 81–83 (1998)

    Article  ADS  Google Scholar 

  • Shi W., Chrostowski L., Faraji B.: Numerical study of the optical saturation and voltage control of a transistor vertical cavity surface emitting laser. IEEE Photon. Technol. Lett. 20, 2141–2143 (2008)

    Article  ADS  Google Scholar 

  • Sze S.M.: Physics of Semiconductor Devices, 2nd edn. Wiley-Interscience, New York (1981)

    Google Scholar 

  • Seki S., Lui W.W., Yokoyama K.: Explanation for the temperature insensitivity of the Auger recombination rates in 1.55 μm InP-based strained-layer quantum-well lasers. Appl. Phys. Lett. 66, 3093–3095 (1995)

    Article  ADS  Google Scholar 

  • Shirao, M., Lee, N.N.S., Arai, S.: Large signal analysis of AlGaInAs/InP laser transistor. In: Conference on Lasers and Electro-Optics. p. CMY7, San Jose, CA (2010)

  • Then H.W., Feng M., Holonyak J.N.: Microwave circuit model for the three-port transistor laser. Appl. Phys. Lett. 107, 094509 (2010)

    Google Scholar 

  • Then H.W., Wu C.H., Walter G., Feng M., Holonyak N.: Electrical-optical signal mixing and multiplication (2 → 22 GHz) with a tunnel junction transistor laser. Appl. Phys. Lett. 94, 101114 (2009)

    Article  ADS  Google Scholar 

  • Taflove A., Hagness S.C.: Computational Electrodynamics: The Finite-Difference Time-Domain Method. Artech House, Boston (2005)

    Google Scholar 

  • Vurgaftman I., Meyer J.R.: Band parameters for III-V compound semiconductors and their alloys. J. Appl. Phys. 89, 5815–5875 (2001)

    Article  ADS  Google Scholar 

  • Zhang L., Leburton J.P.: Modeling of the transient characteristics of heterojunction bipolar transistor lasers. IEEE J. Quantum Electron. 45, 359–366 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukas Chrostowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, W., Faraji, B., Greenberg, M. et al. Invited Paper: Design and modeling of a transistor vertical-cavity surface-emitting laser. Opt Quant Electron 42, 659–666 (2011). https://doi.org/10.1007/s11082-011-9444-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-011-9444-0

Keywords

Navigation