Skip to main content
Log in

Computational techniques for the analysis and design of dielectric-loaded plasmonic circuitry

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The finite element and the beam propagation method, two widely used methods in photonics, are utilized for the analysis of plasmonic components based on the dielectric-loaded plasmonic waveguide. Two components are chosen as examples and are subsequently numerically investigated by employing the aforementioned methods, in order to demonstrate their applicability in plasmonics. Specifically, a microring resonator add-drop filter and a Mach–Zehnder interferometric switch are analyzed by means of the finite element and the beam propagation method, respectively. The formulation adopted is clearly presented in both cases and the case-dependent implementation details are thoroughly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chen J., Li Z., Fan Z., Yang F.: Finite element beam propagation method for analysis of plasmonic waveguide. Chin. Opt. Lett. 6(8), 572–574 (2008)

    Article  Google Scholar 

  • Deng H., Yevick D.: The nonunitarity of finite-element beam propagation algorithms. IEEE Photon. Technol. Lett. 17(7), 1429–1431 (2005)

    Article  ADS  Google Scholar 

  • Ebbesen T.W., Genet C., Bozhevolnyi S.I.: Surface-plasmon circuitry. Phys. Today 61, 44–50 (2008)

    Article  ADS  Google Scholar 

  • Gosciniak J., Bozhevolnyi S.I., Andersen T.B., Volkov V.S., Kjelstrup-Hansen J., Markey L., Dereux A.: Thermo-optic control of dielectric-loaded plasmonic waveguide components. Opt. Express 18(2), 1207–1216 (2010)

    Article  Google Scholar 

  • Graglia R.D., Wilton D.R., Peterson A.F., Gheorma I.-L.: Higher order interpolatory vector bases on prism elements. IEEE Trans. Antennas Propag. 46(3), 442–450 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Gramotnev D.K., Bozhevolnyi S.I.: Plasmonics beyond the diffraction limit. Nat. Photonics 4(2), 83–91 (2010)

    Article  ADS  Google Scholar 

  • Grandidier J., Colas des Francs G., Markey L., Bouhelier A., Massenot S., Weeber J.-C., Dereux A.: Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip. Appl. Phys. Lett. 96(6), 063105 (2010)

    Article  ADS  Google Scholar 

  • Hadley G.R.: Multistep method for wide-angle beam propagation. Opt. Lett. 17(24), 1743–1745 (1992a)

    Article  MathSciNet  ADS  Google Scholar 

  • Hadley G.R.: Wide-angle beam propagation using Padé approximant operators. Opt. Lett. 17(20), 1426–1428 (1992b)

    Article  ADS  Google Scholar 

  • Hoekstra H.J.W.M.: On beam propagation methods for modelling in integrated optics. Opt. Quant. Electron. 29(2), 157–171 (1997)

    Article  Google Scholar 

  • Holmgaard T., Bozhevolnyi S.I.: Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides. Phys. Rev. B 75, 245405 (2007)

    Article  ADS  Google Scholar 

  • Holmgaard T., Chen Z., Bozhevolnyi S.I., Markey L., Dereux A.: Dielectric-loaded plasmonic waveguide-ring resonators. Opt. Express 17(4), 2968–2975 (2009)

    Article  ADS  Google Scholar 

  • Holmgaard T., Chen Z., Bozhevolnyi S.I., Markey L., Dereux A., Krasavin A.V., Zayats A.V.: Wavelength selection by dielectric-loaded plasmonic components. Appl. Phys. Lett. 94, 051111 (2009)

    Article  ADS  Google Scholar 

  • Jin J.: The Finite Element Method in Electromagnetics, 2nd edn. Wiley, New York (2002)

    MATH  Google Scholar 

  • Karatzidis D.I., Yioultsis T.V.: Efficient analysis of planar microwave circuits with mixed-order prism vector finite macroelements. Int. J. Numer. Model 21(6), 475–492 (2008)

    Article  MATH  Google Scholar 

  • Koshiba M., Tsuji Y.: Curvilinear hybrid edge/nodal elements with triangular shape for guided-wave problems. J. Lightw. Technol. 18(5), 737–743 (2000)

    Article  ADS  Google Scholar 

  • Krasavin A.V., Zayats A.V.: Three-dimensional numerical modeling of photonic integration with dielectric-loaded SPP waveguides. Phys. Rev. B 78, 045425 (2008)

    Article  ADS  Google Scholar 

  • Kriezis E.E., Papagiannakis A.G.: A three-dimensional full vectorial beam propagation method for z-dependent structures. IEEE J. Quant. Electron. 33(5), 883–890 (1997)

    Article  ADS  Google Scholar 

  • Palik, E.D. (eds): Handbook of Optical Constants of Solids, 1st edn. Academic Press, New York (1985)

    Google Scholar 

  • Raether H.: Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer, Berlin (1988)

    Google Scholar 

  • Saitoh K., Koshiba M.: Full-vectorial finite element beam propagation method with perfectly matched layers for anisotropic optical waveguides. J. Lightw. Technol. 19(3), 405–413 (2001)

    Article  ADS  Google Scholar 

  • Schulz D., Glingener C., Bludszuweit M., Voges E.: Mixed finite element beam propagation method. J. Lightw. Technol. 16(7), 1336–1341 (1998)

    Article  ADS  Google Scholar 

  • Selleri S., Vincetti L., Cucinotta A., Zoboli M.: Complex FEM modal solver of optical waveguides with pml boundary conditions. Opt. Quant. Electron. 33, 359–371 (2001)

    Article  Google Scholar 

  • Shibayama J., Yamazaki T., Yamauchi J., Nakano H.: Eigenmode analysis of a light-guiding metal line loaded on a dielectric substrate using the imaginary-distance beam-propagation method. J. Lightw. Technol. 23(3), 1533–1539 (2005)

    Article  ADS  Google Scholar 

  • Teixeira F.L., Chew W.C.: General closed-form PML constitutive tensors to match arbitrary bianisotropic and dispersive linear media. IEEE Microw. Guided Wave Lett. 8(6), 223–225 (1998)

    Article  Google Scholar 

  • Tsilipakos O., Kriezis E.E.: Microdisk resonator filters made of dielectric-loaded plasmonic waveguides. Opt. Commun. 283(15), 3095–3098 (2010)

    Article  ADS  Google Scholar 

  • Tsilipakos O., Yioultsis T.V., Kriezis E.E.: Theoretical analysis of thermally tunable microring resonator filters made of dielectric-loaded plasmonic waveguides. J. Appl. Phys. 106(9), 093109 (2009)

    Article  ADS  Google Scholar 

  • Wu M., Han Z., Van V.: Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale. Opt. Express 18(11), 11,728–11,736 (2010)

    Google Scholar 

  • Yu Z., Veronis G., Fan S., Brongersma M.L.: Gain-induced switching in metal-dielectric-metal plasmonic waveguides. Appl. Phys. Lett. 92(4), 041117 (2008)

    Article  ADS  Google Scholar 

  • Ziogos G.D., Kriezis E.E.: Modeling light propagation in liquid crystal devices with a 3-D full-vector finite-element beam propagation method. Opt. Quant. Electron. 40(10), 733–748 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Odysseas Tsilipakos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsilipakos, O., Pitilakis, A., Tasolamprou, A.C. et al. Computational techniques for the analysis and design of dielectric-loaded plasmonic circuitry. Opt Quant Electron 42, 541–555 (2011). https://doi.org/10.1007/s11082-011-9440-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-011-9440-4

Keywords

Navigation