Advertisement

Optical and Quantum Electronics

, Volume 42, Issue 8, pp 511–519 | Cite as

Coupled-resonator optical waveguides: Q-factor and disorder influence

  • Jure Grgić
  • Enrico Campaioli
  • Søren Raza
  • Paolo Bassi
  • Niels Asger Mortensen
Article

Abstract

Coupled resonator optical waveguides (CROW) can significantly reduce light propagation pulse velocity due to pronounced dispersion properties. A number of interesting applications have been proposed to benefit from such slow-light propagation. Unfortunately, the inevitable presence of disorder, imperfections, and a finite Q value may heavily affect the otherwise attractive properties of CROWs. We show how finite a Q factor limits the maximum attainable group delay time; the group index is limited by Q, but equally important the feasible device length is itself also limited by damping resulting from a finite Q. Adding the additional effects of disorder to this picture, limitations become even more severe due to destructive interference phenomena, eventually in the form of Anderson localization. Simple analytical considerations demonstrate that the maximum attainable delay time in CROWs is limited by the intrinsic photon lifetime of a single resonator.

Keywords

Coupled-resonator optical waveguide (CROW) Photonic crystal waveguides Slow light Group delay 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Soljačić M., Joannopoulos J.D.: Enhancement of nonlinear effects using photonic crystals. Nature Mater. 3(4), 211–219 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    Sakoda K.: Enhanced light amplification due to group-velocity anomaly peculiar to two- and three-dimensional photonic crystals. Opt. Express 4, 167–176 (1999)ADSCrossRefGoogle Scholar
  3. 3.
    Grgić J., Xiao S., Mørk J., Jauho A.P., Mortensen N.A.: Slow-light enhanced absorption in a hollow-core fiber. Opt. Express 18, 14270–14279 (2010)CrossRefGoogle Scholar
  4. 4.
    Soljačić M., Johnson S., Fan S., Ibanescu M., Ippen E., Joannopoulos J.: Photonic-crystal slow-light enhancement of nonlinear phase sensitivity. J. Opt. Soc. Am. B 19(9), 2052–2059 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    Scheuer J., Poon J., Paloczi G., Yariv A.: Coupled resonator optical waveguides (CROWs). Adv. Opt. Quantum Mem. Comput. II 5735, 52–59 (2005)Google Scholar
  6. 6.
    Yariv A., Xu Y., Lee R.K., Scherer A.: Coupled-resonator optical waveguide: a proposal and analysis. Opt. Lett. 24(11), 711–713 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    Mookherjea S., Yariv A.: Coupled resonator optical waveguides. IEEE J. Sel. Top. Quantum Electron 8(3), 448–456 (2002)CrossRefGoogle Scholar
  8. 8.
    Olivier S., Smith C., Rattier M., Benisty H., Weisbuch C., Krauss T., Houdré R., Oesterle U.: Miniband transmission in a photonic crystal coupled-resonator optical waveguide. Opt. Lett. 26(13), 1019–1021 (2001)ADSCrossRefGoogle Scholar
  9. 9.
    Karle T.J., Brown D.H., Wilson R., Steer M., Krauss T.F.: Planar photonic crystal coupled cavity waveguides. IEEE J. Sel. Top. Quantum Electron 8(4), 909–918 (2002)CrossRefGoogle Scholar
  10. 10.
    Altug H., Vuckovic J.: Two-dimensional coupled photonic crystal resonator arrays. Appl. Phys. Lett 84(2), 161–163 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    Martinez A., Garcia J., Sanchis P., Cuesta-Soto E., Blasco J., Marti J.: Intrinsic losses of coupled-cavity waveguides in planar-photonic crystals. Opt. Lett. 32(6), 635–637 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    Mookherjea S., Park J.S., Yang S.H., Bandaru P.R.: Localization in silicon nanophotonic slow-light waveguides. Nature Photon. 2(2), 90–93 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    Mookherjea S., Oh A.: Effect of disorder on slow light velocity in optical slow-wave structures. Opt. Lett. 32(3), 289–291 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    Raza S., Grgic J., Pedersen J., Xiao S., Mortensen N.A.: Coupled-resonator optical waveguides: Q-factor influence on slow-light propagation and the maximal group delay. J. Eur. Opt. Soc. Rap. Publ. 5, 10009 (2010)CrossRefGoogle Scholar
  15. 15.
    Grgić J., Pedersen J.G., Xiao S., Mortensen N.A.: Group-index limitations in slow-light photonic crystals. Photon. Nanostruct. 8, 56–61 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    Datta, S.: Electronic Transport in Mesoscopic Systems. Cambridge Studies in Semiconductor Physics Series (1995)Google Scholar
  17. 17.
    Datta S.: Nanoscale device simulation: the green’s function formalism. Superlattices Microstruct. 28, 253–278 (2000)ADSCrossRefGoogle Scholar
  18. 18.
    Kittel C.: Introduction to Solid State Physics. Wiley, London (2005)Google Scholar
  19. 19.
    Mortensen N.A., Xiao S., Pedersen J.: Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications. Microfluid. Nanofluid 4, 117–127 (2008)CrossRefGoogle Scholar
  20. 20.
    Mortensen N.A., Xiao S.: Slow-light enhancement of Beer-Lambert-Bouguer absorption. Appl. Phys. Lett. 90(14), 141108 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  • Jure Grgić
    • 1
  • Enrico Campaioli
    • 2
  • Søren Raza
    • 1
  • Paolo Bassi
    • 2
  • Niels Asger Mortensen
    • 1
  1. 1.Department of Photonics EngineeringTechnical University of DenmarkKongens LyngbyDenmark
  2. 2.Dipartimento di Elettronica, Informatica e SistemisticaUniversity of BolognaBolognaItaly

Personalised recommendations