Skip to main content
Log in

LED based fiber optic surface plasmon resonance sensor

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Modeling of a miniaturized fiber optic sensor based on surface plasmon resonance utilizing a broad band diffuse source is presented. Attenuated total internal reflection with Kretschmann configuration is the basis of the theoretical model. For simulation both meridional and skew rays are considered. The performance of the sensor is evaluated in terms of sensitivity, detection accuracy and signal to noise ratio. Effects of the numerical aperture of the fiber, core diameter and length of the sensing region on the performance parameters of the sensor are studied. The results are obtained for gold and silver metallic layer on the core of the fiber. The theoretical results obtained are compared with SPR based fiber optic sensor utilizing focused beam on the end face of the fiber from a collimated source. The advantages of using broadband LED (diffuse source) source for launching light in the fiber are the miniaturization, compactness and low cost of the sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Diaz-Herrera N., Esteban O., Navarrete M.C., Haitre M.L., Gonzalez-Cano A.: In situ salinity measurements in sea water with a fiber optic probe. Meas. Sci. Technol. 17, 2227–2232 (2006)

    Article  ADS  Google Scholar 

  • Diez A., Andres M.V., Cruz J.L.: In-line fiber-optic sensors based on excitation of surface plasma modes in metal-coated tapered fibers. Sens. Actuators B 73, 95–99 (2001)

    Article  Google Scholar 

  • Dwivedi Y.S., Sharma A.K., Gupta B.D.: Influence of skew rays on the sensitivity and signal to noise ratio of a surface plasmon resonance based fiber optic sensor: a theoretical study. Appl. Opt. 46, 4563–4569 (2007)

    Article  ADS  Google Scholar 

  • Gentleman D.J., Booksh K.S.: Determining salinity using a multimode fiber optic surface plasmon resonance dip-probe. Talanta 68, 504–515 (2006)

    Article  Google Scholar 

  • Grunwald B., Holst G.: Fibre optic refractive index microsensor based on white-light SPR excitation. Sens. Actuators A 113, 174–180 (2004)

    Article  Google Scholar 

  • Hideki S., Hitoshi S., Mitunori S., Yoshikazu M., Kondoh J.: Development of dual- LED fiber optic surface plasmon sensor for liquid refractive index detection. Prog. Biomed. Opt. Imaging 7, 1291–1306 (2006)

    Google Scholar 

  • Homola J.: On the sensitivity of surface plasmon resonance sensor with spectral interrogation. Sens. Actuators B 41, 207–211 (1997)

    Article  Google Scholar 

  • Jorgenson R.C., Yee S.S.: A fiber-optic chemical sensor based on surface plasmon resonance. Sens. Actuators B 12, 213–220 (1993)

    Article  Google Scholar 

  • Kim Y., Peng W., Banerji S., Booksh K.S.: Tapered fiber optic surface plasmon resonance sensor for analyses of vapor and liquid phases. Opt. Lett. 30, 2218–2220 (2005)

    Article  ADS  Google Scholar 

  • Kimura T.: Basic concepts of the optical waveguide. In: Noda, K. (ed.) Optical Fiber Transmission, North Holland, New York (1986)

    Google Scholar 

  • Liedberg B., Nylander C., Sundstrom I.: Surface plasmon resonance for gas detection and bio sensing. Sens. Actuators 4, 299–304 (1983)

    Article  Google Scholar 

  • Mitsushio M., Higashi S., Higo M.: Construction and evaluation of a gold deposited optical fiber sensors for measurements of refractive indices of alchohals. Sens. Actuators A 111, 252–259 (2004)

    Article  Google Scholar 

  • Ozdemir S.K, Sayan G.T.: Temperature effects on surface plasmon resonance sensor: Design consideration for an optical sensor. J. Lightwave Technol. 21, 805–814 (2003)

    Article  ADS  Google Scholar 

  • Rajan, Chand S., Gupta B.D.: Fabrication and characterization of surface plasmon resonance based fiber optic sensor for bittering component-naringin. Sens. Actuators B 15, 344–348 (2006)

    Article  Google Scholar 

  • Rajan, Chand S., Gupta B.D.: Surface plasmon resonance based fiber optic sensor for the detection of pesticide. Sens. Actuators B 123, 661–666 (2007)

    Article  Google Scholar 

  • Sharma A.K., Gupta B.D.: On the performance of different bimetallic combinations in surface plasmon resonance based fiber optic sensors. J. App. Phys. 101, 093111 (2007)

    Article  ADS  Google Scholar 

  • Sharma A.K., Rajan , Gupta B.D.: Influence of dopants on the performance of a fiber optic surface plasmon resonance sensor. Opt. Commun. 274, 320–326 (2007)

    Article  ADS  Google Scholar 

  • Slavik R., Homola J.: Optical multilayers for LED based surface plasmon resonance sensor. Appl. Opt. 45, 3752–3759 (2006)

    Article  ADS  Google Scholar 

  • Snyder A.W., Love J.D.: Optical Waveguide Theory. Chapman and Hall, New York (1991)

    Google Scholar 

  • Verma R.K., Gupta B.D.: Theoretical modeling of a bi-dimensional U-shaped surface plasmon resonance based fiber optic sensor. J. Phys. D: Appl. Phys. 41, 095106 (2008)

    Article  ADS  Google Scholar 

  • Verma R.K., Sharma A.K, Gupta B.D.: Modeling of Surface plasmon resonance based tapered fiber optic sensor with enhanced sensitivity. IEEE Photonics Tech. Lett. 19, 1786–1788 (2007)

    Article  ADS  Google Scholar 

  • Villatoro J., Monzon-Hernandez D., Mejia E.: Fabrication and modelling of uniform waist single mode tapered optical fiber sensor. Appl. Opt. 42, 2278–2283 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. D. Gupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, S., Verma, R.K. & Gupta, B.D. LED based fiber optic surface plasmon resonance sensor. Opt Quant Electron 42, 15–28 (2010). https://doi.org/10.1007/s11082-010-9418-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-010-9418-7

Keywords

Navigation