Skip to main content
Log in

A Bragg-like chirped clad all-solid microstructured optical fiber with ultra-wide bandwidth for short pulse delivery and pulse reshaping

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Chirped cladding is proposed as a novel tailoring tool to simultaneously attain wider transmission window and reduced temporal dispersion in an all-solid Bragg-like microstructured optical fiber as compared to its perfectly periodic cladding counterpart. This design route for photonic bandgap microstructured fibers could be exploited as an additional degree of freedom for bandgap engineering. A suitably chirped clad fiber could be gainfully exploited to deliver femto-second pulse with ultra wide bandwidth. Further, generation of self-similar parabolic profile pulse is demonstrated by simulating propagation of an input Gaussian pulse through a 2 m long sample of such a linearly tapered Bragg like fiber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agrawal G.P.: Nonlinear Fiber Optics, 3rd edn. Academic, San Diego, CA (2001)

    Google Scholar 

  • Anderson D., Desaix M., Karlsson M., Lisak M., Quiroga-Teixeiro M.L.: Wave-breaking-free pulses in nonlinear-optical fibers. J. Opt. Soc. Am. B 10, 1185 (1993)

    Article  ADS  Google Scholar 

  • Bogatyrev V.A., Bubnov M.M., Dianov E.M., Kurkov A.S., Mamyshev P.V., Prokhorov A.M., Rumyantsev S.D., Semenov V.A., Semenov S.L., Sysoliatin A.A., Chernikov S.V., Guryanov A.N., Devyatykh G.G., Miroshnichenko S.I.: A single mode fiber with chromatic dispersion varying along the length. J. Lightwave Technol. 9, 561 (1991)

    Article  ADS  Google Scholar 

  • Dasgupta S, Pal B.P., Shenoy M.R.: Design of a dispersion compensating Bragg fiber with ultra-high figure of merit. Opt. Letts. 30, 1917 (2005)

    Article  ADS  Google Scholar 

  • Dasgupta S., Pal B.P., Shenoy M.R.: Nonlinear spectral broadening in solid core Bragg fibers. J. Lightwave Tech. 25, 2475 (2007)

    Article  ADS  Google Scholar 

  • Feng X., Monro T.M., Petropoulos P., Finazzi V., Richardson D.J.: Extruded single mode high-index-core one-dimensional microstructured optical fiber with high index contrast for highly nonlinear optical deices. Appl. Phys. Lett. 87, 81110 (2005)

    Article  Google Scholar 

  • Feng X., Poletti F., Camerlingo A., Parmigiani F., Horak P., Petropoulos P., Loh W.H., Richardson D.J.: Dispersion-shifted all-solid high index-contrast microstructured optical fiber for nonlinear applications at 1.55 μm. Opt. Exp. 17, 20249 (2009)

    Article  ADS  Google Scholar 

  • Fink Y., Ripin D.J., Fan S., Chen C., Joannopoulos J.D., Thomas E.L.: Guiding optical light in air using an all-dielectric structure. J. Lightwave Tech. 17, 2039 (1999)

    Article  ADS  Google Scholar 

  • Hirooka T., Nakazawa M.: Parabolic pulse generation by use of a dispersion-decreasing fiber with normal GVD. Opt. Lett. 29, 498 (2004)

    Article  ADS  Google Scholar 

  • Knight J.C., Broeng J., Birks T.A., Russell P.St.J.: Photonic bandgap guidance in optical fibers. Science 282, 1476 (1998)

    Article  Google Scholar 

  • Kruglov V.I., Peacock A.C., Harvey J.D., Dudley J.M.: Self-similar propagation of parabolic pulses in normal-dispersion fiber amplifiers. J. Opt. Soc. Am. B 19, 461 (2002)

    Article  ADS  Google Scholar 

  • Latkin A.I., Turitsyn S.K., Sysoliatin A.A.: Theory of parabolic pulse generation in tapered fiber. Opt. Lett. 32, 331 (2007)

    Article  ADS  Google Scholar 

  • Li J., Xue L.J., Wang Z., Han Y.C.: Colloidal photonic crystals with a graded lattice-constant distribution. Colloid. Polym. Sci. 285, 1037 (2007)

    Article  Google Scholar 

  • Liu B. Wen, Hu M., Fang X.H., Li Y.F., Chai L., Li J.Y., Chen W., Wang C.Y.: Tunable bandpass filter with solid core photonic bandgap fiber and Bragg fiber. IEEE Photon. Technol. Lett. 20, 581 (2008)

    Article  ADS  Google Scholar 

  • Millo A., Lobachinsky L., Katzir A.: Single-mode index-guiding photonic crystal fibers for the middle infrared. Photon. Technol. Lett. 20(10), 869 (2008)

    Article  ADS  Google Scholar 

  • Mori D., Baba T.: Dispersion-controlled optical group delay device by chirped photonic crystal waveguides. Appl. Phys. Lett. 85, 1101 (2004)

    Article  ADS  Google Scholar 

  • Nagaraju B., Varshney R.K., Agrawal G.P., Pal B.P.: Parabolic pulse generation in a dispersion decreasing solid core photonic bandgap Bragg fiber. Opt. Comm. 283, 2525 (2010)

    Article  ADS  Google Scholar 

  • Nielsen C.K., Jespersen K.G., Keiding S.R.: A 158 fs 5.3 nJ fiber-laser system at 1 μm using photonic bandgap fibers for dispersion control and pulse compression. Opt. Express 14, 6063 (2006)

    Article  ADS  Google Scholar 

  • Pal B.P., Roy Chaudhuri P., Shenoy M.R.: Fabrication and modeling of fused biconical tapered fiber coupler components. Fiber Int. Opt. 22, 97 (2003)

    Google Scholar 

  • Pal B.P., Dasgupta S., Shenoy M.R.: Bragg fiber design for transparent metro networks. Opt. Exp. 13, 621 (2005)

    Article  ADS  Google Scholar 

  • Pal B.P., Dasgupta S., Shenoy M.R., Sysoliatin A.: Supercontinuum generation in a Bragg fiber: a novel proposal. Optoelectron. Lett. 2, 342 (2006)

    Article  ADS  Google Scholar 

  • Pal B.P., Ghosh S., Varshney R.K., Dasgupta S., Ghatak A.: Loss and dispersion tailoring in 1D photonics bandgap Bragg reflection waveguides: finite chirped claddings as a design tool. Opt. Qua. Elec. 39, 983 (2007)

    Article  Google Scholar 

  • Pal P., Knox W.H.: End-sealing short dispersion micromanaged tapered holey fibers by hole-collapsing. Opt. Exp. 15, 13531 (2007)

    Article  ADS  Google Scholar 

  • Pal, B.P., Ghosh, S., Varshney, R.K.: Microstructured fibers and waveguides with a chirped cladding: a new versatile design platform to enhance their functionality. International conference on optics and photonics (ICOP-2009). 30th October–1st November, Chandigarh, India (2009)

  • Price J.H.V., Monro T.M., Ebendorff-Heidepriem H., Poletti F., Horak P., Finazzi V., Leong J.Y.Y., Petropoulos P., Flanagan J.C., Brambilla G., Feng X., Richardson D.J.: Mid-IR supercontinuum generation from nonsilica microstructured optical fibers. Sel. Topic Quan. Elecrton. 3, 738 (2007)

    Article  Google Scholar 

  • Ranka J.K., Windeler R.S., Stentz A.J.: Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm. Opt. Lett. 25, 25 (2000)

    Article  ADS  Google Scholar 

  • Russell P.: Photonic crystal fibers. Science 299, 358 (2003)

    Article  ADS  Google Scholar 

  • Saitoh K., Koshiba M., Hasegawa T., Sasaoka E.: Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion. Opt. Express 11, 843 (2003)

    Article  ADS  Google Scholar 

  • Skibina J.S., Iiew R., Bethge J., Bock M., Fischer D., Beloglasov V.I., Wedell R., Steinmeyer G.: A chirped photonic crystal fiber. Nature Photonics 2, 679 (2008)

    Article  ADS  Google Scholar 

  • Tamura K., Nakazawa M.: Pulse compression by nonlinear pulse evolution with reduced optical wave breaking in erbium-doped fiber amplifiers, Opt. Letter 21, 68 (1996)

    Google Scholar 

  • Temelkuran B., Hart S.D., Benoit G., Joannopoulos J.D., Fink Y.: Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission. Nature 420, 650 (2002)

    Article  ADS  Google Scholar 

  • Thyagarajan K., Diggavi S., Taneja A., Ghatak A.K.: Simple numerical technique for the analysis of cylindrically symmetric refractive-index profile optical fibers. Appl. Opt. 30, 3877 (1991)

    Article  ADS  Google Scholar 

  • Wei-Ci L., Wen-Cheng X., Jie F., Wei-Cheng C., Shu-Xian L., Song-Hao L.: Higher order effects on self similar parabolic pulse in the microstructured fiber amplifier. Chin. Phys. B 17, 1025 (2008)

    Article  ADS  Google Scholar 

  • Zhang S., Zhao G., Luo A., Zhang Z.: Third order dispersion role on parabolic pulse propagation in dispersion decreasing fiber with normal group velocity dispersion. Appl. Phys. B 94, 227 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bishnu P. Pal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, S., Varshney, R.K., Pal, B.P. et al. A Bragg-like chirped clad all-solid microstructured optical fiber with ultra-wide bandwidth for short pulse delivery and pulse reshaping. Opt Quant Electron 42, 1–14 (2010). https://doi.org/10.1007/s11082-010-9417-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-010-9417-8

Keywords

Navigation