Skip to main content
Log in

InGaAsP/InP evanescent mode waveguide optical isolators and their application to InGaAsP/InP/Si hybrid evanescent optical isolators

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We theoretically investigated InGaAsP/InP evanescent mode waveguide optical isolators and proposed their application to InGaAsP/InP/Si hybrid evanescent optical isolators. InGaAsP/InP evanescent optical isolators are composed of semiconductor optical amplifier (SOA) waveguides having InGaAsP multiple quantum well (MQW) active layer and upper InGaAsP waveguide layer with ferromagnetic layer. Optical isolation is obtained for evanescent optical mode in the InGaAsP waveguide layer. InGaAsP/InP/Si hybrid evanescent optical isolators are theoretically proposed based on the idea of InGaAsP/InP evanescent optical isolators. InGaAsP/InP/Si hybrid evanescent optical isolators are composed of ferromagnetic metal loaded silicon evanescent waveguides with wafer-bonded InGaAsP/InP optical gain material. The optical isolation and propagation loss are discussed with the structure of silicon evanescent waveguides, and optical isolation of 8.0 dB/mm was estimated. The concept of semiconductor evanescent mode optical isolators is feasible with InP based photonic integrated circuits and advanced silicon photonics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amemiya T., Shimizu H., Nakano Y., Hai P.N., Yokoyama M., Tanaka M.: Semiconductor waveguide optical isolator based on nonreciprocal loss induced by ferromagnetic MnAs. Appl. Phys. Lett. 89, 021104 (2006)

    Article  ADS  Google Scholar 

  • Amemiya T., Ogawa Y., Shimizu H., Munekata H., Nakano Y.: Semiconductor waveguide optical isolator incorporating ferromagnetic epitaxial MnSb for high temperature operation. Appl. Phys. Expr. 1(2), 022002 (2008)

    Article  ADS  Google Scholar 

  • Fang A.W., Park H., Kuo Y., Cohen O., Jones R., Paniccia M.J., Bowers J.E.: Electrically pumped hybrid AlGaInAs-silicon evanescent laser. Opt. Express 14(20), 9203–9210 (2006)

    Article  ADS  Google Scholar 

  • Fang A.W., Park H., Kuo Y., Jones R., Cohen O., Liang D., Raday O., Sysak M.N., Paniccia M.J., Bowers J.E.: Hybrid silicon evanescent devices. Mater. Today 10(7–8), 28–35 (2007)

    Article  Google Scholar 

  • Shimizu H., Nakano Y.: First demonstration of TE mode nonreciprocal propagation in an InGaAsP/InP active waveguide for an integratable optical isolator. Jpn. J. Appl. Phys. 43(12A), L1561–L1563 (2004)

    Article  ADS  Google Scholar 

  • Shimizu H., Nakano Y.: Fabrication and characterization of InGaAsP/InP active waveguide optical isolator with 14.7dB/ mm TE mode nonreciprocal attenuation. IEEE/OSA J. Lightwave Tech. 24(1), 38–43 (2006)

    Article  ADS  Google Scholar 

  • Shimizu H., Nakano Y.: Monolithic integration of a waveguide optical isolator with a distributed feedback laser diode in the 1.5 μm wavelength range. IEEE Photon. Tech. Lett. 19(24), 1973–1975 (2007)

    Article  ADS  Google Scholar 

  • Shimizu, H., Mori, T., Goto, S.: Design of evanescent semiconductor waveguide optical isolators. Paper presented at the 9th international conference on numerical simulation of optoelectronic devices, TuA1, Gwangju Institute of Technology, Korea, 14–17 Sept 2009

  • Shoji Y., Hsieh I.W., Osgood R.M., Mizumoto T.: Polarization-independent magneto-optical waveguide isolator using TM-mode nonreciprocal phase shift. J. Lightwave Tech. 25(10), 3108 (2007)

    Article  ADS  Google Scholar 

  • Shoji Y., Mizumoto T., Yokoi H., Hsieh I.W., Osgood R.M. Jr: Magneto optical isolators with silicon waveguides fabricated by direct bonding. Appl. Phys. Lett. 92, 071117 (2008)

    Article  ADS  Google Scholar 

  • Van Parys W., Moeyersoon B., Van Thourhout D., Baets R., Vanwolleghem M., Dagens B., Decobert J., Gouezigou O.L., Make D., Vanheertum R., Lagae L.: Transverse magnetic mode nonreciprocal propagation in an amplifying AlGaInAs/InP optical waveguide isolator. Appl. Phys. Lett. 88, 071115 (2006)

    Article  ADS  Google Scholar 

  • Vanwolleghem M., Van Parys W., Van Thourhout D., Baets R., Lelarge F., Gauthier-Lafaye O., Thedrez B., Wirix-Speetjens R., Lagae L.: Experimental demonstration of nonreciprocal amplified spontaneous emission in a CoFe clad semiconductor optical amplifier for use as an integrated optical isolator. Appl. Phys. Lett. 85(18), 3980–3982 (2004)

    Article  ADS  Google Scholar 

  • Yokoi H., Mizumoto T., Shinjo N., Futakuchi N., Nakano Y.: Demonstration of an optical isolator with a semiconductor guiding layer that was obtained by use of a nonreciprocal phase shift. Appl. Opt. 39(11), 6158–6164 (2000)

    Article  ADS  Google Scholar 

  • Zaets W., Ando K.: Magnetically programmable bistable laser diode with ferromagnetic layer. Photon. Tech. Lett. 13(3), 185–187 (2001)

    Article  ADS  Google Scholar 

  • Zhang S., Lenstra D., Liu Y., Ju H., Li Z., Khoe G.D., Dorren H.J.S.: Multi-state optical flip-flop memory based on ring lasers coupled through the same gain medium. Opt. Commun. 270, 85–95 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiromasa Shimizu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shimizu, H., Goto, S. InGaAsP/InP evanescent mode waveguide optical isolators and their application to InGaAsP/InP/Si hybrid evanescent optical isolators. Opt Quant Electron 41, 653–660 (2009). https://doi.org/10.1007/s11082-010-9373-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-010-9373-3

Keywords

Navigation