Skip to main content
Log in

Role of propagating slit mode in enhanced transmission through slit arrays in a metallic films

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The mechanisms responsible for enhanced transmission of electromagnetic wave through an array of subwavelength slits in a metallic film are analyzed. Theoretical model of the enhanced transmission which takes into account the penetration of electromagnetic field into real metal is developed. Semi-analytical model based on Fabry–Perot formula is considered. Comparison of theoretical model, semi-analytical model and results of numerical simulation of Maxwell equations in time-dependent form (FDTD method) for silver with various geometric parameters is presented. The roles of surface plasmons and plasmon localized along slits are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Avrutsky I., Zhao Y., Kochergin V.: Surface-plasmon-assisted resonant tunneling of light through a periodically corrugated thin metal film. Opt. Lett. 25(9), 595 (2000)

    Article  ADS  Google Scholar 

  • Bethe H.A.: Theory of diffraction by small holes. Phys. Rev. 66, 163–182 (1944)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Cao Q., Lalanne Ph.: Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits. Phys. Rev. Lett. 88, 057403 (2002)

    Article  ADS  Google Scholar 

  • Collin S., Pardo F., Teissier R., Pelouard J.-L.: Strong discontinuities in the complex photonic band structure of transmission metallic gratings. Phys. Rev. B 63, 033107 (2001)

    Article  ADS  Google Scholar 

  • Ebbesen T.W., Lezec H.J., Ghaemi H.F., Thio T., Wolff P.A.: Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998)

    Article  ADS  Google Scholar 

  • Farjadpour A., Roundy D., Rodriguez A., Ibanescu M., Bermel P., Joannopoulos J.D., Johnson S.G., Burr G.: Improving accuracy by subpixel smoothing in finite-difference time domain. Opt. Lett. 31(20), 2972–2974 (2006)

    Article  ADS  Google Scholar 

  • Garcia-Vidal F.J., Martin-Moreno L.: Transmission and focusing of light in one-dimensional periodically nanostructured metals. Phys. Rev. B 66, 155412 (2002)

    Article  ADS  Google Scholar 

  • Johnson P.B., Christy R.W.: Optical Constants of the Noble Metals. Phys. Rev. B 6(12), 4370–4379 (1972)

    Article  ADS  Google Scholar 

  • Klyuchnik A.V., Kurganov S.Yu., Lozovik Yu.E.: Plasma optics of nanostructures. Phys. Sol. State 45(7), 1327–1331 (2003)

    Article  ADS  Google Scholar 

  • Lalanne Ph., Hugonin J.P., Astilean S., Palamaru M., Moller K.D.: One-mode model and airy-like formulae for one-dimensional metallic gratings. J. Opt. A: Pure Appl. Opt. 2, 48–51 (2000)

    Article  ADS  Google Scholar 

  • Lezec H., Thio T.: Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays. Opt. Express 12, 3629–3651 (2004)

    Article  ADS  Google Scholar 

  • Lochbihler H.: Surface polaritons on gold-wire gratings. Phys. Rev. B 50, 4795–4801 (1994)

    Article  ADS  Google Scholar 

  • Lozovik, Yu.E., Klyuchnik, A.V.: In: Keldysh, L.V., Kirzhnitz, D.A., Maradudin, A.A. (eds.) The Dielectric Function of Condensed Systems. Elsevier Science, New York (1987)

  • Moreau A., Lafarge C., Laurent N., Edee K., Granet G.: Enhanced transmission of slit arrays in an extremely thin metallic film. J. Opt. A: Pure Appl. Opt. 9, 165–169 (2007)

    Article  ADS  Google Scholar 

  • Moreno E., Martin-Moreno L., Garcia-Vidal F.J.: Extraordinary optical transmission without plasmons: the s-polarization case. J. Opt. A: Pure Appl. Opt. 8, S94–S97 (2006)

    Article  ADS  Google Scholar 

  • Porto J.A., Garcia-Vidal F.J., Pendry J.B.: Transmission resonances on metallic gratings with very narrow slits. Phys. Rev. Lett. 83, 2845–2848 (1999)

    Article  ADS  Google Scholar 

  • Rather H.: Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer, Berlin (1988)

    Google Scholar 

  • Sarid D.: Long-range surface-plasma waves on very thin metal film. Phys. Rev. Lett. 47(26), 1927 (1981)

    Article  ADS  Google Scholar 

  • Sarrazin M., Vigneron J.-P., Vigoureux J.-M.: Role of wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes. Phys. Rev. B 67, 085415 (2003)

    Article  ADS  Google Scholar 

  • Taflove A., Hagness S.C.: Computational Electrodynamics: The Finite-Difference Time-Domain Method. 3rd edn. Artech House, Boston (2005)

    Google Scholar 

  • Treacy M.M.J.: Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings. Phys. Rev. B 66, 195105 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktoriia E. Babicheva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babicheva, V.E., Lozovik, Y.E. Role of propagating slit mode in enhanced transmission through slit arrays in a metallic films. Opt Quant Electron 41, 299–313 (2009). https://doi.org/10.1007/s11082-010-9359-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-010-9359-1

Keywords

Navigation