Skip to main content
Log in

Fabrication and characterization of porous silicon layers for applications in optoelectronics

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In the present paper, several samples of porous silicon monolayers and multilayers were prepared at different anodization conditions with fixed HF concentration. The room temperature photoluminescence wavelength observed to be increased with increased etching time and current density respectively. By Raman measurement it has been observed that as the size of silicon crystallites decreased with increased etching time, the silicon optical phonon line shifted somewhat to lower frequency from 520.5 cm−1 and became broader asymmetrically. The surface roughness and pyramid like hillocks surface was confirmed by AFM measurement. In SEM images, the porous silicon layers were clearly observed by white and black strips. It was also observed that the reflectivity increased as the number of porous silicon layers was increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agrawal V., del Rio J.A.: Tailoring the photonic band gap of a porous silicon dielectric mirror. Appl. Phys. Lett. 82(10), 1512–1514 (2003)

    Article  ADS  Google Scholar 

  • Barillaro G., Pieri F., Mastromatteo U.: A porous silicon LED based on a standard BCD technology. Opt. Mater. 17(1–2), 91–94 (2001)

    Article  ADS  Google Scholar 

  • Bisi O., Ossicini S., Pavesi L.: Porous silicon: a quantum sponge structure for silicon based optoelectronics. Surf. Sci. Rep. 38, 1–126 (2000)

    Article  Google Scholar 

  • Boeringer Daniel W., Tsu R.: Lateral photovoltaic effect in porous silicon. Appl. Phys. Lett. 65(18), 2332–2334 (1994)

    Article  ADS  Google Scholar 

  • Canham L.T.: Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 57, 1046–1048 (1990)

    Article  ADS  Google Scholar 

  • Cho C.-H., Seo Y.-S., Na H., Na H., Kim Y.: Size effect in Raman scattering of porous silicon. J. Kor. Phys. Soc. 33(3), 292–296 (1998)

    Google Scholar 

  • Descrovi E., Frascella F., Sciacca B., Geobaldo F., Dominici L., Michelotti F.: Coupling of surface waves in highly defined one-dimensional porous silicon photonic crystals for gas sensing applications. Appl. Phys. Lett. 91, 241109–241111 (2007)

    Article  ADS  Google Scholar 

  • Dobrzański L.A., Wosińska L., Dołżańska B., Drygała A.: Comparison of electrical characteristics of silicon solar cells. J. Achi. Mater. Manuf. Eng. 18(1–2), 215–218 (2006)

    Google Scholar 

  • Dubey R.S., Gautam D.K.: Development of simulation tools to study optical proprieties of one-dimensional photonic crystal. J. Electromagn. Waves Appl. 22(5–6), 849–860 (2008)

    Article  Google Scholar 

  • Gautam D.K., Khokle W.S.: Drift velocity and ionization coefficient for holes in single-valley semiconductors. Solid-State Elect. 30(12), 1271–1275 (1987)

    Article  ADS  Google Scholar 

  • Gautam D.K., Khokle W.S., Garg K.B.: Photon emission from reverse-biased silicon P–N junctions. Solid-State Elect. 31(2), 219–222 (1988)

    Article  ADS  Google Scholar 

  • Hou H., Xu H., Zhange F., Li M., Yu M.: An effective method of preparing light-emitting porous silicon. Appl. Phys. Lett. 68(17), 2323–2325 (1996)

    Article  ADS  Google Scholar 

  • John S.: Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2849 (1987)

    Article  ADS  Google Scholar 

  • Kalem S., Yavuzcein O.: Possibility of fabricating light-emitting porous silicon from gas phase etchants. Opt. Exp. 6(1), 7–11 (1999)

    Article  ADS  Google Scholar 

  • Kozlowski F., Lang W.: Spatially resolved Raman measurements at electroluminescent porous n-silicon. J. Appl. Phys. 72(1), 5401 (1992)

    Article  ADS  Google Scholar 

  • Lang W., Steinger P., Kozlowski F.: Porous silicon electroluminescent devices. J. Lumin. 57, 341–349 (1993)

    Article  Google Scholar 

  • Lin, C.W., Chen, Y.L., Lee, Y.S.: Micro-porous silicon structure with low optical reflection J. Mater. Sci.: Mater. Electron. (2008). doi:10.1007/s10854-008-9724-z

  • Lipiski M., Panek P., Ciach R.: The industrial technology of crystalline silicon solar cells. J. Opt. Adv. Mater. 5(5), 1365–1371 (2003)

    Google Scholar 

  • Lugo J.E., Lopez H.A., Chan S., Fauchet P.M.: Porous silicon multilayer structures: a photonic band gap analysis. J. Appl. Phys. 91(8), 4966–4972 (2002)

    Article  ADS  Google Scholar 

  • Moretti L., Rea I., De Stefano L., Rendina I.: Periodic versus aperiodic: enhancing the sensitivity of porous silicon based optical sensors. Appl. Phys. Lett. 90, 191112 (2007)

    Article  ADS  Google Scholar 

  • Ouyang H., Striemer Christopher C., Fauchet Philippe M.: Quantitative analysis of the sensitivity of porous silicon optical biosensors. Appl. Phys. Lett. 88, 163108–163110 (2006)

    Article  ADS  Google Scholar 

  • Pavesi L., Guardini R.: Porous silicon: silicon quantum dots for photonic applications. Brazl. J. Phys. 26(1), 152–169 (1996)

    Google Scholar 

  • Setzu S., Ferrand P., Romestain R.: Optical properties of multilayered porous silicon. Mater. Sci. Engg. 70, 34–42 (2000)

    Article  Google Scholar 

  • Singh, S., Sharma, S.N., Shivaprasad, G.S.M., Mohan, L., Khan, M.A.: Nanostructured porous silicon as functionalized material for biosensor application. J. Mater. Sci.: Mater. (2008). doi:10.1007/s10856-008-3509-z

  • Smestad G., Kunst M., Vial C.: Photovoltaic response in electrochemically prepared photoluminescent porous silicon. Solar Energy Mater. Solar Cells 26, 277–283 (1992)

    Article  Google Scholar 

  • Sui Z., Leong Patrick P., Herman Irving P.: Raman analysis of light-emitting porous silicon. Appl. Phys. Lett. 60(17), 2086–2088 (1992)

    Article  ADS  Google Scholar 

  • Vasquez-A M.A., Roidriguez G.A., Gracia-Salgado G., Romero-Raredess G., Pena-Sierra R.: FTIR and Photoluminescence studies of porous silicon layers oxidized in controlled water vapor conditions. Revista Mexicana De Fisca 53(6), 431–435 (2007)

    Google Scholar 

  • Voos M., Uzan P., Delalande C., Bastard G.: Visible photoluminescence from porous silicon: a quantum confinement effect mainly due to holes?.  Appl. Phys. Lett. 61(10), 1213–1215 (1992)

    Article  ADS  Google Scholar 

  • Weng Y.M., Fan Z.N., Zong X.F.: Luminescence studies on porous silicon. Appl. Phys. Lett. 63(2), 168–170 (1993)

    Article  ADS  Google Scholar 

  • Yablonovitch E.: Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987)

    Article  ADS  Google Scholar 

  • Yeo Z., Dong-sheng L., Shou-xiang X., De-ren Y., Min-hua J.: Influence of polarized bias and porous silicon morphology on the electrical behavior of Au-porous silicon contacts. J. Zhejiang Univ. SCI. 6B 11, 1135–1319 (2005)

    Google Scholar 

  • Zhao Y., Li D., Yang D.: Al-assisted anodic etched porous silicon. J. Mater. Sci. 41, 5283–5286 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Dubey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dubey, R.S., Gautam, D.K. Fabrication and characterization of porous silicon layers for applications in optoelectronics. Opt Quant Electron 41, 189 (2009). https://doi.org/10.1007/s11082-009-9341-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-009-9341-y

Keywords

Navigation