Skip to main content
Log in

Design of an optical sensor array for hydrocarbon monitoring

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Evanescent field optical sensors are accurately designed for hydrocarbon monitoring in water. Various kinds of waveguide sensors are optimized by considering a polydimethylsiloxane polymeric overlay as sensor region. The simulation results suggest that the selection of a suitable waveguide cross section can enhance the sensor performance. In particular, the hollow waveguide sensor exhibits very intriguing performance, the absorbance being quite linear with respect to the contaminant concentration. For the toluene pollution the absorbance exhibits a slope \({S_{\rm TE}^{A} =2.52 \times 10^{-2}\,{\rm ppm}^{-1}}\) for a waveguide reference length L = 1.18 mm. In order to simultaneously detect different pollutants in water such as toluene, benzene, chlorobenzene and ethilbenzene, an array of four miniaturized hollow waveguide sensors is designed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barber J.P., Conkey D.B., Lee J.R., Hubbard N.B., Howell L.L., Schmidt H., Hawkins A.R.: Fabrication of hollow waveguides with sacrificial aluminum cores. IEEE Photon. Technol. Lett. 17, 363–365 (2005)

    Article  ADS  Google Scholar 

  • Barber J.P., Lunt E.J., George Z.A., Yin D., Schmidt H., Hawkins A.R.: Integrated hollow waveguides with arch-shaped cores. IEEE Photon. Technol. Lett. 18, 28–30 (2006)

    Article  ADS  Google Scholar 

  • Beregovski Y., Hennig O., Fallahi M., Guzman F., Clemens R., Mendes S., Peyghambarian N.: Design and characteristics of DBR-laser-based environmental sensors. Sens. Actuators B 53, 116–124 (1998)

    Article  Google Scholar 

  • Bernini R., Campopiano S., Zeni L., Sarro P.M.: ARROW optical waveguides based sensors. Sens. Actuators B 100, 143–146 (2004)

    Article  Google Scholar 

  • Buerck J., Roth S., Kraemer K., Scholz M., Klaas N.J.: Application of a fiber-optic NIR-EFA sensor system for in situ monitoring of aromatic hydrocarbons in contaminated groundwater. Hazard. Mater. 83, 11–28 (2001)

    Article  Google Scholar 

  • D’Orazio A., De Sario M., Giasi C.I., Mescia L., Petruzzelli V., Prudenzano F.: Design of planar optic sensors for hydrocarbon detection. Opt. Quantum Electron. 36, 507–526 (2004)

    Article  Google Scholar 

  • D’Orazio A., De Sario M., Petruzzelli V., Prudenzano F.: Leaky mode propagation in planar multilayer birefringent waveguides: longitudinal dielectric tensor configuration. IEEE J. Light. Technol. 12, 453–462 (1994)

    Article  ADS  Google Scholar 

  • Fleming J.W.: Dispersion in GeO2–SiO2 glasses. Appl. Opt. 23, 4486–4493 (1984)

    Article  ADS  Google Scholar 

  • Hong J., Kim K.H., Shin J.H., Huh C., Sung G.Y.: Prediction of the limit of detection of an optical resonant reflection biosensor. Opt. Express 5, 8972–8978 (2007)

    Article  ADS  Google Scholar 

  • Hua P., Hole J.P., Wilkinson J.S., Proll G., Tschmelak J., Gauglitz G., Jackson M.A., Nudd R., Griffith H.M.T., Abuknesha R.A., Kaiser J., Kraemmer P.: Integrated optical fluorescence multisensor for water pollution. Opt. Express 13, 1124–1130 (2005)

    Article  ADS  Google Scholar 

  • Jones Y.K., Li Z., Johnson M.M., Josse F., Hossenlopp J.M.: ATR-FTIR spectroscopic analysis of sorption of aqueous analytes into polymer coatings used with guided SH-SAW sensors. IEEE Sens. J. 5, 1175–1184 (2005)

    Article  Google Scholar 

  • Kinrot N., Nathan M.J.: Investigation of a periodically segmented waveguide Fabry-Pe/spl acute/rot interferometer for use as a chemical/biosensor. Light. Technol. 24, 2139–2145 (2006)

    Article  Google Scholar 

  • Krioukov E., Greve J., Otto C.: Performance of integrated optical microcavities for refractive index and fluorescence sensing. Sens. Actuators B 90, 58–67 (2003)

    Article  Google Scholar 

  • Lieberzeit P.A., Dickert F.L.: Sensor technology and its application in environmental analysis. Anal. Bioanal. Chem. 387, 237–247 (2007)

    Article  Google Scholar 

  • Lo S.S., Chiu H.K., Chen C.C., Hsu S.C., Liu C.Y.: Fabricating low-loss hollow optical waveguides via amorphous silicon bonding using dilute KOH solvent. IEEE Photon. Technol. Lett. 17, 2592–2594 (2005)

    Article  ADS  Google Scholar 

  • Manoli E., Samara C.: Polycyclic aromatic hydrocarbons in natural waters: sources, occurrence and analysis. Trends Analyt. Chem. 18, 417–428 (1999)

    Article  Google Scholar 

  • Nardi L.: Determination of siloxane–water partition coefficients by capillary extraction—high-resolution gas chromatography study of aromatic solvents. J. Chromatogr. A 985, 39–45 (2003)

    Article  Google Scholar 

  • Plowman T.E., Reichert W.M., Peters C.R., Wang H.K., Christensen D.A., Herron J.N.: Femtomolar sensitivity using a channel-etched thin film waveguide fluoroimmunosensor. Biosens. Biolelectron. 11, 149–160 (1996)

    Article  Google Scholar 

  • Prieto F., Sepulveda B., Calle A., Llobera A., Domìnguez C., Lechug L.M.: Integrated Mach-Zehnder interferometer based on ARROW structures for biosensor applications. Sens. Actuators B 92, 151–158 (2003)

    Article  Google Scholar 

  • Prudenzano F., D’Orazio A., De Sario M., Petruzzelli V.: Comparison between the performance of Ti:LiNbO3 and H:LiNbO3 rotated optical axis waveguides—summary. J. Electromagn. Waves Appl. 11, 547–559 (1997)

    Article  Google Scholar 

  • Schipper E.F., Brugman A.M., Dominguez C., Lechuga L.M., Kooyman R.P.H., Greve J.: The realization of an integrated Mach-Zehnder waveguide immunosensor in silicon technology. Sens. Actuators B 40, 147–153 (1997)

    Article  Google Scholar 

  • Schwotzer G., Latka I., Lehmann H., Willsch R.: Optical sensing of hydrocarbons in air or in water using UV absorption in the evanescent field of fibers. Sens. Actuators B 38, 150–153 (1997)

    Article  Google Scholar 

  • Smith R.C., Baker K.S.: Optical properties of the clearest natural. Waters. Appl. Opt. 20, 177–184 (1981)

    Article  ADS  Google Scholar 

  • Stewart G., Norris J., Clark D.F., Culshaw B.: Evanescent-wave chemical sensors—a theoretical evaluation. Int. J. Optoelectron. 6, 227–238 (1991)

    Google Scholar 

  • Sun R., Dong P., Ning-ning F., Ching-yin H., Michel J., Lipson M., Kimerling L.: Horizontal single and multiple slot waveguides: optical transmission at λ =  1,550 nm. Opt. Express 15, 17967–17972 (2007)

    Article  ADS  Google Scholar 

  • Suzuki A., Kondoh J., Matsui Y., Shiokawa S., Suzuki K.: Development of novel optical waveguide surface plasmon resonance (SPR) sensor with dual light emitting diodes. Sens. Actuators B 106, 383–387 (2005)

    Article  Google Scholar 

  • Vigano C., Ruysschaert J.M., Goormaghtigh E.: Sensor applications of attenuated total reflection infrared spectroscopy. Talanta 65, 1132–1142 (2005)

    Article  Google Scholar 

  • Weissman Z., Brand E., Ruschin S., Goldberg D.: Segmented waveguides and their applications for biosensing. SPIE 3936, 284–292 (2000)

    Article  ADS  Google Scholar 

  • Zimmerman B., Burck J., Ache H.J.: Studies on siloxane polymers for NIR-evanescent wave absorbance sensors. Sens. Actuators B 41, 45–54 (1997)

    Article  Google Scholar 

  • Zourob M., Goddard N.J.: Metal clad leaky waveguides for chemical and biosensing applications. Biosens. Bioelectron. 20, 1718–1727 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Prudenzano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prudenzano, F., Mescia, L., Allegretti, L.A. et al. Design of an optical sensor array for hydrocarbon monitoring. Opt Quant Electron 41, 55–68 (2009). https://doi.org/10.1007/s11082-009-9322-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-009-9322-1

Keywords

Navigation