Skip to main content
Log in

An improved perfectly matched layer for the eigenmode expansion technique

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

When performing optical simulations for rotationally symmetric geometries using the eigenmode expansion technique, it is necessary to place the geometry under investigation inside a cylinder with perfectly conducting walls. The parasitic reflections at the boundary of the computational domain can be suppressed by introducing a perfectly matched layer (PML) using e.g. complex coordinate stretching of the cylinder radius. However, the traditional PML suffers from an artificial field divergence limiting its usefulness. We show that the choice of a constant cylinder radius leads to mode profiles with exponentially increasing field amplitudes resulting in numerical instability. As a remedy we propose an improved PML based on a mode-dependent cylinder radius and mode profiles with stable field amplitudes. The new PML formulation eliminates the artificial field divergence and ensures numerical stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PML:

Perfectly Matched Layer

EET:

Eigenmode Expansion Technique

References

  • Balanis C.A.: Auxiliary vector potentials, construction of solutions, and radiation and scattering equations. In: Balanis, C.A. (eds) Advanced Engineering Electromagnetics, pp. 254–309. Wiley, New York (1989)

    Google Scholar 

  • Bérenger J.-P.: A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114, 185–200 (1994). doi:10.1006/jcph.1994.1159

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Bienstman P., Baets R.: Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers. Opt. Quantum Electron. 33, 327–341 (2001). doi:10.1023/A:1010882531238

    Article  Google Scholar 

  • Bienstman P., Derudder H., Baets R., Olyslager F., De Zutter D.: Analysis of cylindrical waveguide discontinuities using vectorial eigenmodes and perfectly matched layers. IEEE Trans. Microw. Theor. Tech. 49, 349–354 (2001). doi:10.1109/22.903096

    Article  Google Scholar 

  • Bienstman P., Baets R.: Advanced boundary conditions for eigenmode expansion models. Opt. Quantum Electron. 34, 523–540 (2002)

    Google Scholar 

  • Chen L., Towe E.: Nanowire lasers with distributed-Bragg-reflector mirrors. Appl. Phys. Lett. 89, 053125 (2006). doi:10.1063/1.2245219

    Article  ADS  Google Scholar 

  • Chew W.C., Weedon W.H.: A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates. Microw. Opt. Technol. Lett. 7, 599–604 (1994). doi:10.1002/mop.4650071304

    Article  ADS  Google Scholar 

  • Gregersen N., Tromborg B., Bozhevolnyi S.I.: Vectorial modeling of near-field imaging with uncoated fiber probes: transfer function and resolving power. Appl. Opt. 45, 8739–8747 (2006). doi:10.1364/AO.45.008739

    Article  ADS  Google Scholar 

  • Gregersen N., Nielsen T.R., Tromborg B., Mørk J.: Quality factors of nonideal micro pillars. Appl. Phys. Lett. 91, 011116 (2007). doi:10.1063/1.2751586

    Article  ADS  Google Scholar 

  • Gregersen N., Nielsen T.R., Claudon J., Gérard J.-M., Mørk J.: Controlling the emission profile of a nanowire with a conical taper. Opt. Lett. 33, 1693–1695 (2008). doi:10.1364/OL.33.001693

    Article  ADS  Google Scholar 

  • Li L.: Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings. J. Opt. Soc. Am. A 13, 1024–1035 (1996). doi:10.1364/JOSAA.13.001024

    Article  ADS  Google Scholar 

  • Maslov A.V., Ning C.Z.: Far-field emission of a semiconductor nanowire laser. Opt. Lett. 29, 572–574 (2004). doi:10.1364/OL.29.000572

    Article  ADS  Google Scholar 

  • Sacks Z., Kingland D., Lee R., Lee J.: A perfectly matched anisotropic absorber for use as an absorbing boundary condition. IEEE Trans. Antennas Propag. 43, 1460–1463 (1995). doi:10.1109/8.477075

    Article  ADS  Google Scholar 

  • Sagan H.: Boundary and eigenvalue problems in mathematical physics. Dover Publications Inc., New York (1989)

    Google Scholar 

  • Shyroki D.M., Lavrinenko A.V.: Perfectly matched layer method in the finite-difference time-domain and frequency-domain calculations.. Phys. Stat. Sol. (b) 244, 3506–3514 (2007)

    Article  Google Scholar 

  • Watanabe Y., Yamamoto N., Komori K.: Numerical analysis of waveguides in three-Dimensional photonic crystal with finite thickness. Jpn. J. Appl. Phys. 43, 2015–2018 (2004). doi:10.1143/JJAP.43.2015

    Article  ADS  Google Scholar 

  • Yariv A.: Propagation of optical beams in fibers. In: Yariv, A. (eds) Optical Electronics in Modern Communications, pp. 76–120. Oxford University Press, New York (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niels Gregersen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gregersen, N., Mørk, J. An improved perfectly matched layer for the eigenmode expansion technique. Opt Quant Electron 40, 957–966 (2008). https://doi.org/10.1007/s11082-009-9275-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-009-9275-4

Keywords

Navigation