Skip to main content
Log in

Terahertz wave switch based on photonic crystal ring resonators

Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, we have presented a compact and integrated terahertz wave switch design based on photonic crystal ring resonators. The photonic crystal structure with square lattice is investigated and applied for design of ring resonators. The switching mechanism of this novel switch is based on the variation of the resonant frequency of the ring resonator inserted between two parallel waveguides. The refractive index of the holes of the structure filled with polyaniline electrorheological fluids are varied by applied external electric field, the result of which is the variation of the ring resonant frequency. The proposed device is analyzed by using finite difference time domain method. Numerical simulation results show that this switch has high extinction ratio, small size, low voltage and advantages of selectivity of coupling THz wave to different output ports.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

References

  • Abdelmaleki F., Aroua W., Bouchriha H. (2003) Modelling of photonic crystals for the design of photonic device based on SOI substrate. Opt. Quantum Electron. 35: 1245–1256. doi:10.1023/B:OQEL.0000004634.06860.92

    Article  Google Scholar 

  • Chen H., Padilla Zide J., Gossard A., Taylor A., Averitt R. (2006) Active terahertz metamaterial devices. Nature 444: 597–600. doi:10.1038/nature05343

    Article  ADS  Google Scholar 

  • Chigrin D., Lavrinenko A., Torres C. (2005) Numerical characterization of nanopillar photonic crystal waveguides and directional couplers. Opt. Quantum Electron. 37: 331–341. doi:10.1007/s11082-005-1189-1

    Article  Google Scholar 

  • Chiu W., Huang T., Wu Y., Chan Y., Hou C., Chien H. et al (2007) A photonic crystal ring resonator formed by SOI nano-rods. Opt. Express 15: 1500–1506. doi:10.1364/OE.15.015500

    Article  Google Scholar 

  • Deng S., Cai W., Astratov V. (2004) Numerical study of light propagation via whispering gallery modes in microcylinder coupled resonator optical waveguides. Opt. Express 12: 6468–6480. doi:10.1364/OPEX.12.006468

    Article  ADS  Google Scholar 

  • Gang, B., Huajuan, W., Dongxiao, Y., Shenggang, L., Kangsheng, C.: Theoretical study on THz components and systems based on photonic crystals. 12th International Conference on Terahertz Electronics, Karlsruhe, Germany, pp. 687–688 (2004)

  • Guo S., Albin S. (2003) Numerical techniques for excitation and analysis of defect modes in photonic crystals. Opt. Express 11: 1080–1089

    Article  ADS  Google Scholar 

  • Hu J., Ren G., Yu X., Wang G., Shum P., Lu C. et al (2007) A generalized 2D FDTD model for photonic crystal fibers with frequency dependent media. Opt. Quantum Electron. 39: 1133–1143. doi:10.1007/s11082-007-9167-4

    Article  Google Scholar 

  • Jiusheng L. (2007) Terahertz modulator using photonic crystals. Opt. Commun. 269: 98–101 doi:10.1016/j.optcom.2006.07.053

    Article  Google Scholar 

  • Kosmidou E., Kriezis E., Tsiboukis T. (2005) FDTD analysis of photonic crystal defect layers filled with liquid crystals. Opt. Quantum Electron. 37: 149–160. doi:10.1007/s11082-005-1132-5

    Article  Google Scholar 

  • Kurt, H., Citrin, D.: New approaches in biochemical sensing using photonic crystals in the terahertz region. 13th International Conference on Terahertz Electronics, Williamsburg, USA, pp. 36–37 (2005)

  • Li Z., Zhang Y., Li B. (2006) Terahertz photonic crystal switch in silicon based on self-imaging principle. Opt. Express 14: 3887–3891doi:10.1364/OE.14.003887

    Article  ADS  Google Scholar 

  • Li J., He J., Hong Z. (2007) Terahertz wave switch based on silicon photonic crystals. Appl. Opt. 46: 5034–5037. doi:10.1364/AO.46.005034

    Article  ADS  Google Scholar 

  • Liu H., Yao J., Xu D., Wang P. (2007) Propagation characteristics of two dimensional photonic crystals in terahertz range. Appl. Phys. B 87: 57–63. doi:10.1007/s00340-006-2529-y

    Article  ADS  Google Scholar 

  • Martinez A., Anchis P., Marti J. (2005) Mach–Zehnder interferometers in photonic crystals. Opt. Quantum Electron. 37: 77–93. doi:10.1007/s11082-005-1124-5

    Article  Google Scholar 

  • Qiang Z., Zhou W. (2007) Optical add-drop filters based on photonic crystal ring resonators. Opt. Express 15: 1823–1831. doi:10.1364/OE.15.001823

    Article  ADS  Google Scholar 

  • Reyes G., Quema A., Ponseca C., Pobre J., Quiroga R. (2005) Low loss single mode terahertz waveguiding using Cytop. Appl. Phys. Lett. 89: 211119(1–3)

    Article  Google Scholar 

  • Shur, M.: Terahertz Technology devices and applications. Solid-State Device Research Conference, ESSDERC, France, pp. 13–21, (2005)

  • Vivas J.R., Chigrin D.N., Lavrinenko A.V., Sotomayor Torres C.M. (2005) Resonant add-drop filter based on a photonic quasicrystal. Opt. Express 13: 826–835. doi:10.1364/OPEX.13.000826

    Article  ADS  Google Scholar 

  • Woolard D., Brown E., Pepper M., Kemp M. (2005) Terahertz frequency sensing and imaging: a time of reckoning future applications. Proc. IEEE 93: 1722–1743. doi:10.1109/JPROC.2005.853539

    Article  Google Scholar 

  • Zhang Z., Qiu M. (2005) Compact in-plane channel drop filter design using a single cavity with two degenerate modes in 2D photonic crystal slabs. Opt. Express 13: 2596–2604. doi:10.1364/OPEX.13.002596

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Maleki Javan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maleki Javan, A.R., Granpayeh, N. Terahertz wave switch based on photonic crystal ring resonators. Opt Quant Electron 40, 695–705 (2008). https://doi.org/10.1007/s11082-008-9257-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-008-9257-y

Keywords

Navigation