Skip to main content

Model of the femtosecond laser inscription by a single pulse


A comprehensive model of processes involved in femtosecond laser inscription and the subsequent structural material modification is developed. Different time scales of the pulse-plasma dynamics and thermo-mechanical relaxation allow for separate numerical treatments of these processes, while linking them by an energy transfer equation. The model is illustrated and analysed on examples of inscription in fused silica and the results are used to explain previous experimental observations.

This is a preview of subscription content, access via your institution.


  • Benham, R.P., Crawford, R.J., Armstrong, C.G.: Mechanics of Engineering Materials, 2nd edn. Prentice Hall (1996)

  • Bennett, T.D., Li, L.: Modeling laser texturing of silicate glass. J. Appl. Phys. 89, 141 (2001)

    Article  Google Scholar 

  • Carr, C.W., Feit, M.D., Rubenchik, A.M., De Mange, P., Kucheyev, S.O., Shirk, M.D., Radousky, H.B., Demos, S.G.: Radiation produced by femtosecond laser-plasma interaction during dielectric breakdown. Opt. Lett. 30, 661 (2005)

    Article  ADS  Google Scholar 

  • COMSOL AB Comsol Multiphysics 3.3. (2006)

  • Doremus, R.H.: Viscosity of silica. J. Appl. Phys. 92, 7619 (2002)

    Article  ADS  Google Scholar 

  • Dubov, M., Allsop, T.D.P., Martinez, A., Mezentsev, V., Bennion, I.: Highly birefringent long period gratings fabricated with femtosecond laser. Optical Fibre Communication Conference (OFC) (2006)

  • Feit, M.D., Fleck, J.A.: Effect of refraction on spot-size dependence of laser-induced breakdown. Appl. Phys. Lett. 24, 169 (1974)

    Article  ADS  Google Scholar 

  • Feng, Q., Moloney, J.V., Newell, A.C., Wright, E.M., Cook, K., Kennedy, P.K., Hammer, D.X., Rockwell, B.A., Thompson, C.R.: Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses. IEEE J. Quantum Electron. 33, 127 (1997)

    Article  Google Scholar 

  • Gaeta, A.L.: Catastrophic collapse of ultrashort pulses. Phys. Rev. Lett. 84, 3582 (2000)

    Article  ADS  Google Scholar 

  • Juodkazis, S., Nishimura, K., Tanaka, S., Misawa, H., Gamaly, E.G., Luther-Davies, B., Hallo, L., Nicolai, P., Tikhonchuk, V.T.: Laser-induced microexplosion confined in the bulk of a sapphire cystal: evidence of multimegabar pressures. Phys. Rev. Lett. 96, 166101 (2006)

    Article  ADS  Google Scholar 

  • Krol, D.M., Lyons, K.B., Brawer, S.A., Kurkjian, C.R.: High-temperature light scattering and the glass transition in vitreous silica. Phys. Rev. B 33, 4196 (1986)

    Article  ADS  Google Scholar 

  • Marburger, J.H.: Self-focusing: theory. Prog. Quantum Electron. 4, 35 (1975)

    Article  Google Scholar 

  • Martinez, A., Dubov, M., Khrushchev, I., Bennion, I.: Structure of Fibre Gratings Directly Written by Infrared Femtosecond Laser 2006 Conference on Lasers and Electro-Optics (CLEO) JTuD13 (2006)

  • Mezentsev, V., Dubov, M., Martinez, A., Lai, Y., Allsop, T.P., Khrushchev, I., Webb, D.J., Floreani, F., Bennion, I.: Micro-fabrication of advanced photonic devices by means of direct point-by-point femtosecond inscription in silica. Proc. SPIE 6107, 61070C (2006a)

    Article  Google Scholar 

  • Mezentsev, V., Petrovic, J., Dreher, J., Grauer, R.: Adaptive modeling of the femtosecond inscription in silica. Proc. SPIE 6107, 61070R (2006b)

    Article  Google Scholar 

  • Nguyen, N.T., Saliminia, A., Chin, S.L., Vallee, R.: Control of femtosecond laser written waveguides in silica glass. Appl. Phys. B 85, 145 (2006)

    Article  ADS  Google Scholar 

  • Schaffer, C.B., Garcia, J.F.: Bulk heating of transparent materials using a high-repetition-rate femtosecond laser. Mazur E. Appl. Phys. A 76, 351 (2003)

    Article  ADS  Google Scholar 

  • Sen, S., Dickinson, J.E.: Ab initio molecular dynamics simmulation of femtosecond laser-induced structural modification in vitreous silica. Phys. Rev. B 68, 214204 (2003)

    Article  ADS  Google Scholar 

  • Smelser, C.W., Mihailov, S.J., Grobnic, D.: Formation of type I-IR and type II-IR gratings with an ultrafast IR laser and a phase mask. Opt. Express 13, 5377 (2005)

    Article  ADS  Google Scholar 

  • Stuart, B.C., Felt, M.D., Herman, S., Rubenchik, A.M.: Nanosecond-to-femtosecond laser-induced breakdown in dielectrics. Phys. Rev. B 53, 1749 (1996)

    Article  ADS  Google Scholar 

  • Sun, Q., Jiang, H., Liu, Y., Wu, Z., Yang, H., Gong, Q.: Measurement of the collision time of dense electronic plasma induced by a femtosecond laser in fused silica. Opt. Lett. 30, 320 (2005)

    Article  ADS  Google Scholar 

  • Tzortzakis, S., Sudrie, L., Franco, M., Prade, B., Mysyrowicz, A., Couairon, A., Bergé, L.: Self-guided propagation of ultrashort IR laser pulses in fused silica. Phys. Rev. Lett. 87, 213902 (2001)

    Article  ADS  Google Scholar 

  • Zhang, X.R., Xu, X., Rubenchik, A.M.: Simulation of microscale densification during femtosecond laser processing of dielectric materials. Appl. Phys. A 79, 945 (2004)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Jovana S. Petrovic.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Petrovic, J.S., Mezentsev, V., Schmitz, H. et al. Model of the femtosecond laser inscription by a single pulse. Opt Quant Electron 39, 939–946 (2007).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Femtosecond laser inscription
  • Numerical model