Abstract
A comprehensive model of processes involved in femtosecond laser inscription and the subsequent structural material modification is developed. Different time scales of the pulse-plasma dynamics and thermo-mechanical relaxation allow for separate numerical treatments of these processes, while linking them by an energy transfer equation. The model is illustrated and analysed on examples of inscription in fused silica and the results are used to explain previous experimental observations.
This is a preview of subscription content, access via your institution.
References
Benham, R.P., Crawford, R.J., Armstrong, C.G.: Mechanics of Engineering Materials, 2nd edn. Prentice Hall (1996)
Bennett, T.D., Li, L.: Modeling laser texturing of silicate glass. J. Appl. Phys. 89, 141 (2001)
Carr, C.W., Feit, M.D., Rubenchik, A.M., De Mange, P., Kucheyev, S.O., Shirk, M.D., Radousky, H.B., Demos, S.G.: Radiation produced by femtosecond laser-plasma interaction during dielectric breakdown. Opt. Lett. 30, 661 (2005)
COMSOL AB Comsol Multiphysics 3.3. http://www.comsol.com (2006)
Doremus, R.H.: Viscosity of silica. J. Appl. Phys. 92, 7619 (2002)
Dubov, M., Allsop, T.D.P., Martinez, A., Mezentsev, V., Bennion, I.: Highly birefringent long period gratings fabricated with femtosecond laser. Optical Fibre Communication Conference (OFC) (2006)
Feit, M.D., Fleck, J.A.: Effect of refraction on spot-size dependence of laser-induced breakdown. Appl. Phys. Lett. 24, 169 (1974)
Feng, Q., Moloney, J.V., Newell, A.C., Wright, E.M., Cook, K., Kennedy, P.K., Hammer, D.X., Rockwell, B.A., Thompson, C.R.: Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses. IEEE J. Quantum Electron. 33, 127 (1997)
Gaeta, A.L.: Catastrophic collapse of ultrashort pulses. Phys. Rev. Lett. 84, 3582 (2000)
Juodkazis, S., Nishimura, K., Tanaka, S., Misawa, H., Gamaly, E.G., Luther-Davies, B., Hallo, L., Nicolai, P., Tikhonchuk, V.T.: Laser-induced microexplosion confined in the bulk of a sapphire cystal: evidence of multimegabar pressures. Phys. Rev. Lett. 96, 166101 (2006)
Krol, D.M., Lyons, K.B., Brawer, S.A., Kurkjian, C.R.: High-temperature light scattering and the glass transition in vitreous silica. Phys. Rev. B 33, 4196 (1986)
Marburger, J.H.: Self-focusing: theory. Prog. Quantum Electron. 4, 35 (1975)
Martinez, A., Dubov, M., Khrushchev, I., Bennion, I.: Structure of Fibre Gratings Directly Written by Infrared Femtosecond Laser 2006 Conference on Lasers and Electro-Optics (CLEO) JTuD13 (2006)
Mezentsev, V., Dubov, M., Martinez, A., Lai, Y., Allsop, T.P., Khrushchev, I., Webb, D.J., Floreani, F., Bennion, I.: Micro-fabrication of advanced photonic devices by means of direct point-by-point femtosecond inscription in silica. Proc. SPIE 6107, 61070C (2006a)
Mezentsev, V., Petrovic, J., Dreher, J., Grauer, R.: Adaptive modeling of the femtosecond inscription in silica. Proc. SPIE 6107, 61070R (2006b)
Nguyen, N.T., Saliminia, A., Chin, S.L., Vallee, R.: Control of femtosecond laser written waveguides in silica glass. Appl. Phys. B 85, 145 (2006)
Schaffer, C.B., Garcia, J.F.: Bulk heating of transparent materials using a high-repetition-rate femtosecond laser. Mazur E. Appl. Phys. A 76, 351 (2003)
Sen, S., Dickinson, J.E.: Ab initio molecular dynamics simmulation of femtosecond laser-induced structural modification in vitreous silica. Phys. Rev. B 68, 214204 (2003)
Smelser, C.W., Mihailov, S.J., Grobnic, D.: Formation of type I-IR and type II-IR gratings with an ultrafast IR laser and a phase mask. Opt. Express 13, 5377 (2005)
Stuart, B.C., Felt, M.D., Herman, S., Rubenchik, A.M.: Nanosecond-to-femtosecond laser-induced breakdown in dielectrics. Phys. Rev. B 53, 1749 (1996)
Sun, Q., Jiang, H., Liu, Y., Wu, Z., Yang, H., Gong, Q.: Measurement of the collision time of dense electronic plasma induced by a femtosecond laser in fused silica. Opt. Lett. 30, 320 (2005)
Tzortzakis, S., Sudrie, L., Franco, M., Prade, B., Mysyrowicz, A., Couairon, A., Bergé, L.: Self-guided propagation of ultrashort IR laser pulses in fused silica. Phys. Rev. Lett. 87, 213902 (2001)
Zhang, X.R., Xu, X., Rubenchik, A.M.: Simulation of microscale densification during femtosecond laser processing of dielectric materials. Appl. Phys. A 79, 945 (2004)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Petrovic, J.S., Mezentsev, V., Schmitz, H. et al. Model of the femtosecond laser inscription by a single pulse. Opt Quant Electron 39, 939–946 (2007). https://doi.org/10.1007/s11082-007-9158-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11082-007-9158-5
Keywords
- Femtosecond laser inscription
- Numerical model