Skip to main content
Log in

BiBPM modeling of slow wave structures

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The improvement of an algorithm of the 2D bidirectional beam propagation method (BiBPM) is presented. Usually, BiBPM is applied in modeling the Bragg structures with the flat surfaces or the stair-case approximation is used in the case of curved reflective surfaces. The local normal approximation is introduced and a new 2D BiBPM algorithm is derived for TE and TM polarization of guided waves. The complex Padé approximants are used for approximation of square root operators in BiBPM method. The pole-zero shifting method of building the complex Padé approximants is developed for the correct description of the evanescent field simulated by BiBPM. The numerical examples of application of BiBPM in modeling slow wave Bragg structures fabricated by the nano-imprint method in the polymer layers are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chiou Y.-P. and Chang H.-C. (1997). Analysis of optical waveguide discontinuities using the Padé approximants. IEEE Photonics Technol. Lett. 9: 964–966

    Article  ADS  Google Scholar 

  • Dong W. and Pregla R. (1996). The method of lines for analysis of integrated optical waveguide structures with arbitrary curved interfaces. J.Lightwave Tech. 14: 879–884

    Article  ADS  Google Scholar 

  • Elkin N.N., Napartovich A.P., Vysotsky D.V., Troshchieva V.N., Bao L., Kim N.H. and Mawst L.J. (2004). Modeling of and experimentation on vertical cavity surface emitting laser arrays. Laser Physics 14: 378–389

    Google Scholar 

  • El-Refaei H., Yevick D. and Betty I. (2000). Stable and noniterative bidirectional beam propagation method. IEEE Photonics Technol. Lett. 12: 389–391

    Article  ADS  Google Scholar 

  • Feng N.-N. and Huang W.-P. (2003). A field-based numerical method for three-dimensional analysis of optical waveguide discontinuities. IEEE J. Quantum Electron. 39: 1661–1665

    Article  ADS  Google Scholar 

  • Gnan M., Bellanca G., Chong H.M.H., Bassi P. and DeLa Rue R.M. (2006). Modeling of photonic wire Bragg gratings. Opt.Quant.Electron. 38: 133–148

    Article  Google Scholar 

  • Hadley G.R. (1992). Wide-angle beam propagation using Padé approximant operators. Opt. Lett. 17: 1426–1428

    ADS  MathSciNet  Google Scholar 

  • Hadley G.R. (1992). Multistep method for wide-angle beam propagation. Opt. Lett. 17: 1743–1745

    ADS  MathSciNet  Google Scholar 

  • Helfert S.F. and Pregla R. (2002). The method of lines: a versatile tool for the analysis of waveguide structures. Electromagnetics 22: 615–637

    Article  Google Scholar 

  • Ho P.L. and Lu Y.Y. (2001). A stable bidirectional propagation method based on scattering operators. IEEE Photonics Technol. Lett. 13: 1316–1318

    Article  ADS  Google Scholar 

  • Jungling S. and Chen J.C. (1994). A study and optimization of eigenmode calculations using the imaginary-distance beam propagation method. IEEE J.Quantum Electron. 30: 2098–2105

    Article  ADS  Google Scholar 

  • Locatelli A., Pigozzo F.-M., Baranio F., Modotto D., Capobianco A.-D. and De Angelis C. (2003). Bidirectional beam propagation method for second-harmonic generation in engineered multilayered waveguides. Opt. Quantum. Electron. 35: 429–452

    Article  Google Scholar 

  • Locatelli A., Modotto D., De Angelis C., Pigozzo F.-M. and Capobianco A.-D. (2003). Nonlinear bidirectional bean propagation method based on scattering operators for periodic microstructured waveguides. J. Opt. Soc. Am. B 20: 1724–1731

    ADS  Google Scholar 

  • Lu Y.Y. (2006). Some techniques for computing wave propagation in optical waveguides. Commun. Computational Phys. 1: 1056–1075

    Google Scholar 

  • Milinazzo F.A., Zala C.A. and Brooke G.H. (1997). Rational square-root approximations for parabolic equation algorithms. J. Acoust. Soc. Am. 101: 760–766

    Article  ADS  Google Scholar 

  • Petruskevicius, R.: Bidirectional beam propagation method for modeling optical storage systems. SPIE Proc. 6252, 62520Y-1-7 (2006)

  • Petruskevicius R., Bellanca G. and Bassi P. (1998). Nonlinear PML boundary conditions for nonparaxial BPM in χ(2) materials. IEEE Photonics Technol. Lett. 10: 1434–1436

    Article  ADS  Google Scholar 

  • Petruskevicius R. (2005). Complex Padé approximants for bidirectional and nonparaxial beam propagation method. Lithuanian J. Phys. 45: 225–233

    Article  Google Scholar 

  • Rao H., Steel M.J., Scarmozzino R. and Osgood R.M. (2001). VCSEL design using the bidirectional beam-propagation method. IEEE J. Quantum Electron. 37: 1435–1440

    Article  ADS  Google Scholar 

  • Rao H., Steel M.J., Scarmozzino R. and Osgood R.M. (2000). Complex propagators for evanescent waves in bidirectional beam propagation method. J. Lightwave Tech. 18: 1155–1160

    Article  ADS  Google Scholar 

  • Rao H., Scarmozzino R. and Osgood R. (1999). A bidirectional beam propagation method for multiple dielectric interfaces. IEEE Photonics Technol. Lett. 11: 830–832

    Article  ADS  Google Scholar 

  • Scarmozzino R., Gopinath A., Pregla R. and Helfert S. (2000). Numerical techniques for modeling guided-wave photonic devices. IEEE J. Select. Top. Quantum Electron. 6: 150–162

    Article  Google Scholar 

  • Sujecki S., Sewell P., Benson T.M. and Kendall P.C. (1999). Novel beam propagation algorithms for tapered optical structures. J. Lightwave Tech. 17: 2379–2388

    Article  ADS  Google Scholar 

  • Taflove A. (1995). Computational Electrodynamics – The finite-difference time-domain method. Artech House, Norwood

    MATH  Google Scholar 

  • Vassallo C. (1996). Limitations of the wide-angle beam propagation method in nonuniform systems. J. Opt. Soc. Am. A 13: 761–770

    Article  ADS  Google Scholar 

  • Yevick D. and Bardyszewski W. (1992). Correspondence of variational finite-difference (relaxation) and imaginary-distance propagation methods for modal analysis. Opt. Lett. 17: 329–331

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Petruskevicius.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petruskevicius, R. BiBPM modeling of slow wave structures. Opt Quant Electron 39, 407–418 (2007). https://doi.org/10.1007/s11082-007-9093-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-007-9093-5

Keywords

Navigation