Skip to main content

All-optical coherent control of spin dynamics in semiconductor quantum dots

Abstract

We develop a new general model for rigorous theoretical description of circularly polarised ultrashort optical pulse interactions with the resonant non-linearities in semiconductor QDs embedded in optical waveguides and semiconductor microcavities. The method is based on the self-consistent FDTD-solution of the vector Maxwell equations coupled via macroscopic polarisation to the originally derived time-evolution equations of a discrete four-level quantum system in terms of the real pseudospin (coherence) vector exploiting the SU(4) group formalism. Selective excitation of specific spin-states with predefined helicity of the optical pulse and formation of polarised Self-Induced Transparency (SIT)-solitons in a specially prepared degenerate four-level system is numerically demonstrated. The model is applied to the stimulated optical dipole transitions of the trion state in a singly charged QD taking into account the spin relaxation dynamics. Our theoretical and numerical approach yields the time evolution of the spin population of the trion state which is in good agreement with the time-resolved polarised photoluminescence experimental data.

This is a preview of subscription content, access via your institution.

References

  1. Economou S.E., Liu R.-B., Sham L.J., Steel D.G., (2005). Phys. Rev. B 71: 195327

    Article  Google Scholar 

  2. Greilich A., Oulton R., Zhukov E.A., YugovaI.A., Yakovlev D.R., Bayer M., Shabaev A., Efros Al.L., Merkulov I.A., Stavarache V., Reuter D., Wieck A., (2006). Phys. Rev. Lett. 96: 227401

    Article  ADS  Google Scholar 

  3. Hartmann A., et al., (2000). Phys. Rev. Lett. 84: 5648

    Article  ADS  Google Scholar 

  4. Hioe F.T., Eberly J.H. (1981). Phys. Rev. Lett. 47: 838

    Article  ADS  MathSciNet  Google Scholar 

  5. Merkulov I.A., Efros Al.L., Rosen M., (2002). Phys. Rev. B 65: 205309

    Article  ADS  Google Scholar 

  6. Rugar D., et al., (2004). Nature (London) 430: 329

    Article  ADS  Google Scholar 

  7. Slavcheva G., Hess O., (2005). Phys. Rev. A 72: 053804

    Article  ADS  Google Scholar 

  8. Shabaev A., Efros Al.L., Gammon D, Merkulov I.A., (2003). Phys. Rev. B 68: 201305

    Article  ADS  Google Scholar 

  9. Taflove A., (1995). Computational Electrodynamics: The Finite-Difference Time-Domain Method. Artech, Norwood, MA

    MATH  Google Scholar 

  10. Tischler J.G., et al., (2002). Phys. Rev. B 66: 081310

    Article  ADS  Google Scholar 

  11. Warburton R.J., et al., (2000). Nature (London) 405: 926

    Article  ADS  Google Scholar 

  12. Xiao M., et al., (2004). Nature (London) 430, 435

    Article  ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gabriela Slavcheva.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Slavcheva, G., Hess, O. All-optical coherent control of spin dynamics in semiconductor quantum dots. Opt Quant Electron 38, 973–979 (2006). https://doi.org/10.1007/s11082-006-9050-8

Download citation

Keywords

  • coherent pulse propagation
  • finite-difference time-domain (FDTD) method
  • Maxwell–Bloch equations
  • optical orientation
  • quantum dots
  • self-induced transparency
  • solitons
  • spin dynamics
  • trion