Skip to main content
Log in

Modelling leaky photonic wires: A mode solver comparison

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We present results from a mode solver comparison held within the frameworkof the European COST P11 project. The structure modelled is a high-index contrast photonic wire in silicon-on- insulator subject to substrate leakage. The methods compared are both in-house developed and commercial, and range from effective index and perturbation methods, over finite-element and finite-difference codes, beam propagation methods, to film mode matching methods and plane wave expansion methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreani L.C. and Gerace D. (2006). Phys. Rev. B 73: 235114

    Article  ADS  Google Scholar 

  • ARPACK Software, available from http://www.caam.rice.edu/pub/software/ARPACK.

  • Bienstman P. (2004). Opt. Quantum Electron. 36: 5

    Article  Google Scholar 

  • CAMFR, available from http://camfr.sourceforge.net

  • Conradi O.S.F., Pregla R. and Helfert (2001). IEEE J. Quantum Electron. 37: 928

    Article  ADS  Google Scholar 

  • COST P11 website: http://w3.uniroma1.it/energetica/

  • Ctyroky J., Helfert S., Pregla R., Bienstman P., Baets R., De Ridder R., Stoffer R, Klaasse G., Petracek J., Lalanne P., Hugonin J.P. and DeLa Rue R.M. (2002). Opt Quantum Electron. 34: 455

    Article  Google Scholar 

  • Cucinotta A, Pelosi G., Selleri S., Vincetti L. and Zoboli M. (1999). Microwave Opt. Technol. Lett. 23: 67

    Article  Google Scholar 

  • Czyszanowski, T., M. Dems, H. Thienpont, and K. Panajotov. Proc. SPIE 6185 61850Y, 2006.

  • Dems M., Kotynski R. and Panajotov K. (2005). Opt. Express 13: 3196

    Article  ADS  Google Scholar 

  • Dems, M and K. Panajotov. 8th International Conference on Transparent Optical Networks, ICTON 2006, Nottingham UK, 18–22 Jun 2006.

  • Dems, M., T. Czyszanowski. and K. Panajotov. Proc. SPIE 6182 618219, 2006.

  • Dumon P., Bogaerts W., Van Campenhout J., Wiaux V., Wouters J., Beckx S., Taillaert D., Luyssaert B., Bienstman P., Van Thourhout D. and Baets R. (2004). IEEE Photonics Technol. Lett. 16: 1328

    Article  Google Scholar 

  • Fimmwave, ver. 4.4 by Photon Design, http://www.photond.com

  • Ghatak A.K., Thyagarajan K. and Shenoy M.R. (1987). J. Lightwave Technol. 5: 660

    Article  ADS  Google Scholar 

  • Hugonin J.P., Lalanne P., del Villar I. and Matias I.R. (2005). Opt. Quantum Electron. 37: 107

    Article  Google Scholar 

  • Hugonin J.P. and Lalanne P. (2005). J. Opt. Soc. Am. A 22: 1844

    Article  ADS  MathSciNet  Google Scholar 

  • Johnson S.G., Ibanescu M., Skorobogatiy M.A., Weisberg O., Joannopoulos J.D. and Fink Y. (2002). Phys. Rev. E 65: 066611

    Article  ADS  MathSciNet  Google Scholar 

  • Lalanne P. and Jurek M.P. (1998). J. Mod. Opt. 45: 1357

    Article  ADS  Google Scholar 

  • Li L.J. (1996). Opt. Soc. Am. A 13: 1024

    Article  ADS  Google Scholar 

  • Moharam M.G., Grann E.B., Pommet D.A. and Gaylord T.K. (1995). J. Opt. Soc. Am. A 12: 1068

    ADS  Google Scholar 

  • Obayya S.S.A., Rahman B.M.A. and El-Mikati H.A. (2000). J. Lightwave Technol. 18: 409

    Article  ADS  Google Scholar 

  • Obayya S.S.A., Rahman B.M.A., Grattan K.T.V. and El-Mikati H.A. (2002). J. Lightwave Technol. 20: 1054

    Article  ADS  Google Scholar 

  • Olympios, http://www.c2v.nl

  • Selleri S. and Petracek J. (2001). Opt. Quantum Electron. 33: 373

    Article  Google Scholar 

  • Selleri S, Vincetti L.A., Cucinotta A. and Zoboli M. (2001). Opt. Quantum Electron. 33: 359

    Article  Google Scholar 

  • Silberstein E., Lalanne P., Hugonin J.P. and Cao Q. (2001). J. Opt. Soc. Am. A 18: 2865

    ADS  Google Scholar 

  • Sudbo A.S. (1993). Pure Appl. Opt. 2: 211

    Article  ADS  Google Scholar 

  • Tamir, T. Guided-Wave Optoelectronics, Chap. 2. Springer-Verlag.

  • Tsuji Y. and Koshiba M. (2000). J. Lightwave Technol. 18: 618

    Article  ADS  Google Scholar 

  • Uranus H.P., Hoekstra H.J.W.M. and Groesen E. (2004). J. Nonlinear Opt. Phys. Mater. 13: 175

    Article  ADS  Google Scholar 

  • Vassallo C. (1997). Opt Quantum Electron. 29: 95

    Article  Google Scholar 

  • Wijnands F., Hoekstra H.W.M., Krijinen G.J.M. and Ridder R.M. (1994). J. Lightwave Technol. 12: 2066

    Article  ADS  Google Scholar 

  • Xu C.L., Huang W.P. and Chaudhuri S.K. (1993). J. Lightwave Technol. 11: 1209

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Bienstman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bienstman, P., Selleri, S., Rosa, L. et al. Modelling leaky photonic wires: A mode solver comparison. Opt Quant Electron 38, 731–759 (2006). https://doi.org/10.1007/s11082-006-9025-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-006-9025-9

Keywords

Navigation