Skip to main content
Log in

The impact of nonequilibrium gain in a spectral laser diode model

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We describe the inclusion of nonequilibrium gain into a self-consistent 2.5D CW spectral laser diode model and report on the use of this model to investigate the origin of gain compression in a 975 nm high-brightness tapered QW laser diode. Nonequilibrium gain is calculated using a dynamic gain model, which simulates the dynamic relaxation of the quantum well carrier energy distributions under the influence of steady-state electrical and optical excitation. Calculated gain and spontaneous emission spectra are included in the laser model via parameterised look up tables. Both simulated and experimentally measured intracavity spontaneous emission spectra show an increased carrier density and a blue-shift of the gain maximum with increasing bias caused by carrier heating and spectral hole burning. The accurate incorporation of nonequilibrium gain compression is therefore vital for the accurate prediction of the operating characteristics of these devices and for the experimental determination of the active region temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agrawal G.P. (1984). J. Appl. Phys. 56:3100

    Article  ADS  Google Scholar 

  • Bream, P.J., S. Sujecki and E.C. Larkins. Semiconductor and Integrated Optoelectronics (SIOE) conference. Cardiff, April, 2006.

  • Bull S., Andrianov A.V., Wykes J.G., Lim J.J., Sujecki S., Auzanneau S.C., Calligaro M., Lecomte M., Parillaud O., Krakowski M., Larkins E.C. (2005). IEE Proc. Optoelectron. 153:2

    Article  Google Scholar 

  • Casey Jr. H.C., Panish M.B. (1978) Heterostructure Lasers Part A: Fundamental Principles. Academic Press Inc., London

    Google Scholar 

  • Fukuda M. (1999) Optical Semiconductor Devices. John Wiley & Sons, Inc., New York

    Google Scholar 

  • Hadley G.R. (1992). Opt. Lett. 17:1743

    Article  ADS  MathSciNet  Google Scholar 

  • Kaminow I., Li T. (eds) (2002) Optical Fiber Telecommunications. Academic Press, San Diego

    Google Scholar 

  • Kazarinov R.F., Henry C.H., Logan R.A. (1982). J. Appl. Phys. 53:4631

    Article  ADS  Google Scholar 

  • Lim J.J., Benson T.M., Larkins E.C. (2005). IEEE J. Quantum Electron. 41:506

    Article  ADS  Google Scholar 

  • Ramanujan S., Winful H.G. (1996). IEEE J. Quantum Electron. 32:784

    Article  ADS  Google Scholar 

  • Saleh B.E.A., Teich M.C. (1991) Fundamentals of Photonics. John Wiley & Sons, Inc., Toronto

    Google Scholar 

  • Sujecki S., Borruel L., Wykes J.G., Moreno P., Sumpf B., Sewell P., Wenzel H., Benson T.M., Erbert G., Esquivias I., Larkins E.C. (2003). IEEE J. Select. Topics Quantum Electron. 9:823

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. Lim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bream, P.J., Lim, J.J., Bull, S. et al. The impact of nonequilibrium gain in a spectral laser diode model. Opt Quant Electron 38, 1019–1027 (2006). https://doi.org/10.1007/s11082-006-9017-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-006-9017-9

Keywords

Navigation