Skip to main content
Log in

40 GHz Mode-Locked Semiconductor Lasers: Theory, Simulations and Experiment

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We study both theoretically and experimentally typical operation regimes of 40 GHz monolithic mode-locked lasers. The underlying Traveling Wave Equation model reveals quantitative agreement for characteristics of the fundamental mode-locking as pulse width and repetition frequency tuning, as well as qualitative agreement with the experiments for other dynamic regimes. Especially the appearance of stable harmonic mode-locking at 80 GHz has been predicted theoretically and confirmed by measurements. Furthermore, we derive and apply a simplified Delay-Differential-Equation model which guides us to a qualitative analysis of bifurcations responsible for the appearance and the breakup of different mode-locking regimes. Higher harmonics of mode-locking are predicted by this model as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avrutin, E., V. Nikolaev and D. Gallagher. Optoelectronic Devices: Advanced Simulation and Analysis, chapter 7: Monolithic Mode-Locked Semiconductor Lasers, p. 185–215. J. Piprek, 2005.

  • U. Bandelow M. Radziunas J. Sieber M. Wolfrum (2001) IEEE J. Quantum Electron 37 IssueID2 183–188 Occurrence Handle10.1109/3.903067

    Article  Google Scholar 

  • U. Bandelow H. Wenzel H.-J. Wünsche (1992) Electron. Lett. 28 1324–1326

    Google Scholar 

  • Engelborghs, K., T. Luzyanina and G. Samaey. DDE-BIFTOOL v. 2.00: A matlab package for bifurcation analysis of delay differential equations. Technical Report TW-330, Department of Computer Science, K.U. Leuven, Leuven, Belgium, 2001.

  • Guglielmi, N. and E. Hairer. Users’ Guide for the Code RADAR5, 2000.

  • H. Haus (2001) IEEE J. Sel. Top Quantum Electron 6 1173–1185 Occurrence Handle10.1109/2944.902165 Occurrence Handle2001LNP...579.....H

    Article  ADS  Google Scholar 

  • R. Kaiser B. Hüttl H. Heidrich S. Fidorra W. Rehbein H. Stolpe R. Stenzel W. Ebert G. Sahin (2003) IEEE Photon Technol. Lett 15 IssueID5 634–636 Occurrence Handle10.1109/LPT.2003.809924

    Article  Google Scholar 

  • G.H.C. New (1974) IEEE J. Quantum Electron 10 115–124 Occurrence Handle10.1109/JQE.1974.1145781

    Article  Google Scholar 

  • Rachinskii, D. and A. Vladimirov. Q-switching instability in a mode-locked semiconductor laser. WIAS preprint 975, 2004.

  • Radziunas, M., H.-J. Wünsche, B. Sartorius, O. Brox, D. Hoffmann, K. Schneider and D. Marcenac. Optoelectronic Devices: Advanced Simulation and Analysis, chapter 5: Multisection Lasers: Longitudinal Modes and their Dynamics, pp. 121–150. J. Piprek, 2005.

  • A. Vladimirov D. Turaev G. Kozyreff (2004) Opt. Lett 29 1221–1223 Occurrence Handle10.1364/OL.29.001221 Occurrence Handle2004OptL...29.1221V

    Article  ADS  Google Scholar 

  • H.-J. Wünsche M. Radziunas S. Bauer O. Brox B. Sartorius (2003) IEEE J. Selected Topics Quantum Electron 9 IssueID3 857–864 Occurrence Handle10.1109/JSTQE.2003.818854

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Bandelow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bandelow, U., Radziunas, M., Vladimirov, A. et al. 40 GHz Mode-Locked Semiconductor Lasers: Theory, Simulations and Experiment. Opt Quant Electron 38, 495–512 (2006). https://doi.org/10.1007/s11082-006-0045-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-006-0045-2

Keywords

Navigation