Skip to main content
Log in

Monte Carlo Modeling of Phonon-assisted Carrier Transport in Cubic and Hexagonal Gallium Nitride

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Monte Carlo method is employed for the calculations of electron and hole transport characteristics of cubic and hexagonal GaN at T = 300 K in the fields of E ≤ 1000 kV/cm−1. It is shown that electron drift velocity and mobility is heavily reduced in hexagonal crystals due to additional phonon modes (~ 26 meV) and by fast electron scattering between the lowest Γ1 valley and the minimally (~ 400 meV) up-shifted Γ3 valley. Intervalley scattering is mediated most efficiently by the low-energy (~ 2 meV) acoustic phonons. The randomizing scattering is even more pronounced in p-type crystals where the sub-bands of light and heavy holes merge at the Γ-point of Brillouin zone. Cubic phase crystals are concluded to be advantageous for ultrafast electronic and photonics device performance because electron drift mobility is higher by an order of magnitude, and the hole mobility is several times higher than those in hexagonal phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • J.M. Barker D.K. Ferry S.M. Goodnick D.D. Koleske A.E. Wickenden R.L. Henry (2002) Microelectron. Eng. 63 193 Occurrence Handle10.1016/S0167-9317(02)00627-5

    Article  Google Scholar 

  • N.G. Basov O.N. Krokhin M. Popov (1961) JETP 40 1320

    Google Scholar 

  • Basov, N.G. Semiconductor Lasers, Nobel lecture, December 11, 1964, http://nobelprize.org/physics/laureates/1964/basov-lecture.pdf.

  • U.V. Bhapkar M.S. Shur (1997) J. Appl. Phys. 82 1649 Occurrence Handle10.1063/1.365963 Occurrence Handle1997JAP....82.1649B

    Article  ADS  Google Scholar 

  • S. Bloom G. Harbeke E. Meier I.B. Ortenburger (1974) Phys. Stat. Solidi 66 161

    Google Scholar 

  • E.G. Brazel M.A. Chin V. Narayanamurti D. Kapolnek E.J. Tarsa S.P. DenBaars (1997) Appl. Phys. Lett. 70 330 Occurrence Handle10.1063/1.118406 Occurrence Handle1997ApPhL..70..330B

    Article  ADS  Google Scholar 

  • R. Brazis R. Raguotis (2004) Appl. Phys. Lett. 85 609 Occurrence Handle10.1063/1.1776622 Occurrence Handle2004ApPhL..85..609B

    Article  ADS  Google Scholar 

  • R. Brazis R. Raguotis (2005) Acta. Physica. Polonica. A 107 324 Occurrence Handle2005AcPPA.107..324B

    ADS  Google Scholar 

  • S. Chichibu T. Mizutani T. Shioda H. Nakanishi T. Deguchi T. Azuhata T. Sota S. Nakamura (1997) Appl. Phys. Lett. 70 3440 Occurrence Handle10.1063/1.119196 Occurrence Handle1997ApPhL..70.3440C

    Article  ADS  Google Scholar 

  • M. Farahmand C. Gareto E. Bellotti K.F. Brennan M. Goano E. Chillino G. Ghione J.D. Albrecht P.P. Ruden (2001) IEEE Trans. Electron. Devices 48 535 Occurrence Handle10.1109/16.906448 Occurrence Handle2001ITED...48..535F

    Article  ADS  Google Scholar 

  • N. Fitzer A. Kuligk R. Redmer M. Statele S.M. Goodnick W. Schattke (2004) Semicond. Sci. Technol. 19 206 Occurrence Handle10.1088/0268-1242/19/4/070 Occurrence Handle2004SeScT..19S.206F

    Article  ADS  Google Scholar 

  • W. Gotz L.T. Romano B.S. Krusor N.M. Johnson R.J. Molnar (1996) Appl. Phys. Lett. 69 242 Occurrence Handle10.1063/1.117937 Occurrence Handle1996ApPhL..69..242G

    Article  ADS  Google Scholar 

  • Z.P. Guan J.Z. Li G.Y. Zhang S.X. Jin X.M. Ding (2000) Semicond. Sci. Technol. 15 51 Occurrence Handle10.1088/0268-1242/15/1/309 Occurrence Handle2000SeScT..15...51G

    Article  ADS  Google Scholar 

  • R.N. Hall G.E. Fenner J.D. Kingsley T.J. Soltys R.O. Carlson (1962) Phys. Rev. Lett. 9 366 Occurrence Handle10.1103/PhysRevLett.9.366 Occurrence Handle1962PhRvL...9..366H

    Article  ADS  Google Scholar 

  • H.L. Hartnagel R. Katilius A. Matulionis (2001) Microwave Noise in Semiconductor Devices Wiley & Sons New York

    Google Scholar 

  • C. Jacoboni P. Lugli (1989) The Monte Carlo Method for Semiconductor Device Simulation Springer New York

    Google Scholar 

  • Y. Kawabe M.M. Morrell G.E. Jabbour S.E. Shaheen B. Kippelen N. Peyghambarian (1998) J. Appl. Phys. 84 5306 Occurrence Handle10.1063/1.368779 Occurrence Handle1998JAP....84.5306K

    Article  ADS  Google Scholar 

  • D. Lancefield H. Eshghi (2001) J. Phys. Condens. Matter 13 8939 Occurrence Handle10.1088/0953-8984/13/40/308 Occurrence Handle2001JPCM...13.8939L

    Article  ADS  Google Scholar 

  • S. Nakamura M. Senoh S. Nagahama N. Iwasa T. Yamada T. Matsushita H. Kiyoku Y. Sugimoto (1996) Jpn. J. Appl. Phys. 35 L217 Occurrence Handle10.1143/JJAP.35.L217 Occurrence Handle1996JaJAP..35L.217N

    Article  ADS  Google Scholar 

  • M.I. Nathan W.P. Dumke G. Burns F.H. Dills G. Lasher (1962) Appl. Phys. Lett. 1 62 Occurrence Handle10.1063/1.1777371 Occurrence Handle1962ApPhL...1...62N

    Article  ADS  Google Scholar 

  • J.C. Nipko C.-K. Loong C.M. Balkas R.F. Davis (1998) Appl. Phys. Lett. 73 34 Occurrence Handle10.1063/1.121714 Occurrence Handle1998ApPhL..73...34N

    Article  ADS  Google Scholar 

  • J. Piprek S. Nakamura (2002) IEE Proc.- Optoelectron 149 145 Occurrence Handle10.1049/ip-opt:20020441

    Article  Google Scholar 

  • S. Porowski I. Grzegory S. Krukowski M. Leszczynski P. Perlin T. Suski (2004) Europhys. News 35 69 Occurrence Handle10.1051/epn:2004301 Occurrence Handle2004ENews..35...69P

    Article  ADS  Google Scholar 

  • B.K. Ridley (1982) Quantum Processes in Semiconductors Clarendon Press Oxford

    Google Scholar 

  • T. Ruf J. Serrano M. Cardona P. Pavone M. Pabst M. Krisch D’Astuto M. T. Suski I. Grzegory M. Leszczynski (2001) Phys. Rev. Lett. 86 906 Occurrence Handle10.1103/PhysRevLett.86.906 Occurrence Handle2001PhRvL..86..906R

    Article  ADS  Google Scholar 

  • H. Siegle G. Kaczmarczyk L. Fillipidis L. Litvinchuk A. Hoffmann C. Thornsen (1997) Phys. Rev. B 55 7000 Occurrence Handle10.1103/PhysRevB.55.7000 Occurrence Handle1997PhRvB..55.7000S

    Article  ADS  Google Scholar 

  • M. Wraback H. Shen J.C. Carrano T. Li J.C. Campbell M.J. Schurman I.T. Ferguson (2000) Appl. Phys. Lett. 76 1155 Occurrence Handle10.1063/1.125968 Occurrence Handle2000ApPhL..76.1155W

    Article  ADS  Google Scholar 

  • S. Yamakawa S. Aboud M. Sarantini S.M. Goodnick (2004) Semicond. Sci. Technol 19 475 Occurrence Handle10.1088/0268-1242/19/4/156 Occurrence Handle2004SeScT..19S.475Y

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Brazis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brazis, R., Raguotis, R. Monte Carlo Modeling of Phonon-assisted Carrier Transport in Cubic and Hexagonal Gallium Nitride. Opt Quant Electron 38, 339–347 (2006). https://doi.org/10.1007/s11082-006-0034-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-006-0034-5

Keywords

Navigation