Skip to main content
Log in

Topical Application of Photofrin® for Oral Neoplasms in Animal

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Early diagnosis improves oral cancer prognosis. Exact demarcation of tumor margins improves surgical outcomes. This study evaluates Photofrin® fluorescence: a new diagnostic procedure for detection of oral neoplasms in animal models. Fourteen male Golden Syrian hamsters were used. 0.5% D.M.B.A (9,10 dimethyl1-1,2-benzanethracene) was brushed onto cheek pouches bilaterally daily for 2,weeks. Hamsters with oral neoplasms received 2.5,mg/ml Photofrin® solution topically. After 3h the neoplasms underwent fluorescence illumination (λex=380–420,nm). A quantitative analysis of the fluorescence contrast between the neoplastic and surrounding tissue was performed using the RGB Mode and the Gray Scale. (GS) Statistical analysis was performed using the ANOVA test. Analysis of the 14 hamsters’ 28 biopsies revealed 4 (14.3%) displayed squamous hyperplasia (1 mild, 3 severe) and 24 (85.7%) displayed squamous cell carcinoma. The sensitivity of neoplasms evaluated using the RGB and GS modes combined resulted in 92.15% (in vivo macroscopic image) and 93.45% (histological). The specificity of neoplasms evaluated via RGB and GS modes combined resulted in 94.78% (in vivo macroscopic image) and 97.30% (histological). The difference between healthy tissue and the lesions as a group is statistically significant. Photofrin® fluorescence provides a sensitive, non-invasive technique for early identification of malignant neoplasms in the oral cavities of animal models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • R. Baumgertner R.M. Huber H. Schulz et al. (1996) Photochem. Photobiol. 36 169

    Google Scholar 

  • R.C.J. Benson (1985) J. Urol. 134 675

    Google Scholar 

  • M.W. Berns J. Coffey A.G. Wile (1984) Laser. Surg. Med. 4 87

    Google Scholar 

  • C.S. Betz H. Stepp P. Janda et al. (2002) Int. J. Cancer. 97 245 Occurrence Handle10.1002/ijc.1596

    Article  Google Scholar 

  • C.-J. Cheng C-H. Sun L-H.L. Lian M.W. Bern J.S. Nelson (1999) Lasers Surg. Med. 24 178

    Google Scholar 

  • M-A. D’Hallewin P.A. Witte ParticleDe E. Waelkens W. Merlecede L. Baert (2000) J. Urol. 164 349

    Google Scholar 

  • D.X. Divaris J.C. Kennedy R.H. Pottier (1990) Am. J. Pathol. 136 891

    Google Scholar 

  • T.J. Dougherty G.B. Fiel et al. (1996) J. Clin. Laser Med. Surg. 16 61

    Google Scholar 

  • R.J. Dunn K.D. Devine (1972) Laryngoscope 82 189

    Google Scholar 

  • A. Ebihara T.B. Krasieva L.H.L. Liaw et al. (2003) Laser Surg. Med. 32 17 Occurrence Handle10.1002/lsm.10137

    Article  Google Scholar 

  • K.F.M. Fan C. Hopper P.M. Speight et al. (1996) Cancer 78 1374 Occurrence Handle10.1002/(SICI)1097-0142(19961001)78:7<1374::AID-CNCR2>3.0.CO;2-L

    Article  Google Scholar 

  • Foote C.S. In: Radicals in Biology, ed. W.A. Pryor. Vol. 2, p. 85. Academic Press, NY, 1976.

  • D. Frimberger D. Zaak H. Stepp et al. (2001) Urology 58 372 Occurrence Handle10.1016/S0090-4295(01)01222-5

    Article  Google Scholar 

  • A. Fryen H. Glanz W. Lohmann et al. (1997) Acta Otolaryngol Stockh 117 316

    Google Scholar 

  • A. Gillenwater R. Jacob R. Ganeshappa et al. (1998) Arch. Otolarygol. 124 1251

    Google Scholar 

  • C.J. Gomer N. Hayashi A.L. Murphree (1987) on Photochem. Photobiol. 46 843

    Google Scholar 

  • C.J. Gomer (1991) Photochem. Photobiol. 54 1093

    Google Scholar 

  • W.K. Hong M.E. Bromer (1983) New Engl. J. Med. 308 75

    Google Scholar 

  • W.K. Hong W.G. Doos (1985) Otolaryng Clin. N. Am. 18 543

    Google Scholar 

  • J.C. Kennedy R.H. Pottier D.C. Pross (1990) J. Photoch. Photobiol B. 6 143

    Google Scholar 

  • J.C. Kennedy R.H. Pottier (1990) J. Photoch. Photobiol. 6 143

    Google Scholar 

  • D. Kessel (Eds) (1990) Photodynamic Therapy of Neoplastic Disease CRC Pres Inc. Boca Raton FL

    Google Scholar 

  • K. Koenig H. Meyer H. Schneckenburger A. Ruck (1993) Laser Med. Sci. 127 1993

    Google Scholar 

  • L. Lipson E.J. Baldes A.M. Olsen (1961) J. Thorac. Cardiov. Sur. 42 623

    Google Scholar 

  • D.G. Mac Donald (1981) J. Oral. Pathol. Med. 10 186

    Google Scholar 

  • M.A. Rettenmaier et al. (1983) Prog. Clin. Biol. Res. 170 767

    Google Scholar 

  • R. Richards-Kortum E. Sevick-Muraca (1996) Annu. Rev. Phys. Chem. 47 555 Occurrence Handle10.1146/annurev.physchem.47.1.555

    Article  Google Scholar 

  • K. Svanberg T. Anderson D. Killander et al. (1994) Brit. J. Dermatol. 130 743

    Google Scholar 

  • N. Neen ParticleVan der H.S. Bruijn Particlede R.W.J. Berg et al. (1996) Brit. J. Cancer. 73 925

    Google Scholar 

  • K.R. Weishaupt C.J. Gomer T.J. Dougherty (1976) Cancer Res. 36 2326

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Jen Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, CJ., Lin, MS., Hwang, PS. et al. Topical Application of Photofrin® for Oral Neoplasms in Animal. Opt Quant Electron 37, 1353–1365 (2005). https://doi.org/10.1007/s11082-005-4215-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-005-4215-4

Keywords

Navigation