Skip to main content

Advertisement

Log in

Reconstruction of Optical Energy Deposition for Backward Optoacoustic Imaging

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Visualizing optical properties, such as the optical absorption coefficient, helps us to obtain structural information of biological tissues. In this paper, we present an efficient reconstruction algorithm for optical energy deposition in backward optoacoustic imaging. Note that econstruction of optical energy deposition is the first step to imaging the optical absorption coefficient distribution. This algorithm is derived from the optoacoustic wave equations with line focusing, in which the focusing techniques were utilized to reduce the reconstruction problem from three dimensions (3-D) to one dimension (1-D). Simulations and experiments were conducted to verify efficacy of this algorithm. In the simulations, optoacoustic signals were generated based on the solution of the optoacoustic wave equations. In the experiments, a 3-D backward mode optoacoustic imaging system was built. The system consisted of a Nd YAG laser for optical irradiation and an acoustic detection system with a broadband hydrophone. A phantom was used to illustrate validity of the proposed algorithm. The results show that optical energy deposition can be efficiently reconstructed in both simulations and experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • A. Blouin D. Levesque C. Neron D. Drolet J.P. Monchalin (1998) Opt. Express. 2 531 Occurrence Handle1998OExpr...2..531B

    ADS  Google Scholar 

  • W.-F. Cheong S.A. Prahl A.J. Welch (1990) IEEE Trans Quantum Electron. 26 2166 Occurrence Handle10.1109/3.64354

    Article  Google Scholar 

  • R.O. Esenaliev A.A. Karabutov A.A. Oraevsky (1999) IEEE J. Sel. Top. Quantum Electron. 5 981

    Google Scholar 

  • V.E. Gusev A.A. Karabutov (1993) Laser Optoacoustics American Institute of Physics New York

    Google Scholar 

  • C.G.A. Hoelen F.F.M. Mul Particlede (2000) Appl. Opt. 39 5872 Occurrence Handle2000ApOpt..39.5872H

    ADS  Google Scholar 

  • C.G.A. Hoelen F.F.M. Mul Particlede R. Pongers A. Dekker (1998) Opt. Lett. 23 648 Occurrence Handle1998OptL...23..648H

    ADS  Google Scholar 

  • Hollman K.W., Rigby K.W., O’Donnell M.. UFFC Conference IEEE, Proceedings on Ultrasonics.

  • Hollman, K.W., S.Y. Emelianov, G.J. Spooner, R.T. Juhasz and M. O’Donnell. UFFC Conference IEEE, Proceedings on Ultrasonics, Atlanta, 7–10 Oct. 2001, 1461, 2001.

  • A.A. Karabutov N.B. Podymova V.S. Letokhov (1996) Appl. Phys. 63 545 Occurrence Handle10.1007/s003400050123

    Article  Google Scholar 

  • A.A. Karabutov E.V. Savateeva N.B. Podymova A.A. Oraevsky (2000) J. Appl. Phys. 87 2003 Occurrence Handle10.1063/1.372127 Occurrence Handle2000JAP....87.2003K

    Article  ADS  Google Scholar 

  • K.P. Kostli M. Frenz H.P. Weber G. Paltauf H. Schmidt-Kloiber (2001) Appl. Opt. 40 3800 Occurrence Handle2001ApOpt..40.3800K

    ADS  Google Scholar 

  • R.A. Kruger P. Liu Y.R. Fang C.R. Appledom (1995) Med. Phys. 22 1605 Occurrence Handle10.1118/1.597429

    Article  Google Scholar 

  • Kruger R.A., Stantz K.M., Jr W.L. Kiser. Photonics West Conference SPIE, Proceedings on Biomedical optoacoustics IV, San Jose, 26–27 January 2002, 521, 2002.

  • Lake Tahoe, 17–20 Oct. 1999, 1257, 1999.

  • D. Levesque A. Blouin C. Neron J.P. Monchalin (2002) Ultrasonics 40 1057 Occurrence Handle10.1016/S0041-624X(02)00256-1

    Article  Google Scholar 

  • P.-C. Li M.-L. Li (2003) IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 50 128

    Google Scholar 

  • M.-L. Li W.-J. Guan P.-C. Li (2004) IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 51 63 Occurrence Handle10.1109/TUFFC.2004.1320762

    Article  Google Scholar 

  • C.-K. Liao M.-L. Li P.-C. Li (2004) Opt. Let. 29 2506 Occurrence Handle2004OptL...29.2506L

    ADS  Google Scholar 

  • G. Paltauf H.J. Schmidt-Kloiber (2000) Appl. Phys. 88 1624

    Google Scholar 

  • V. Tuchin (2000) Tissue Optics SPIE Press Washington

    Google Scholar 

  • Viator J.A., Svaasand L.O., G. Aguilar, B. Choi and J.S. Nelson. Photonics West Conference SPIE, Proceedings on Biomedical optoacoustics IV, San Jose, 26–27 January 2003, 14, 2003.

  • M. Walker (1970) Mathematical Methods of Physics Benjamin/Cummings Menlo Park

    Google Scholar 

  • X. Wang G. Ku M.A. Wegiel D.J. Bornhop G. Stoica L.V. Wang (2003) Opt. Let. 29 730 Occurrence Handle2004OptL...29..730W

    ADS  Google Scholar 

  • X. Wang Y. Pang G. Ku X. Xie G. Stoica L.V. Wang (2003b) Nat. Biotechnol. 21 803

    Google Scholar 

  • M. Xu Y. Xu L.V. Wang (2003) IEEE Trans. Biomed. Engine. 50 1086

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pai-Chi Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liao, CK., Li, PC. Reconstruction of Optical Energy Deposition for Backward Optoacoustic Imaging. Opt Quant Electron 37, 1339–1351 (2005). https://doi.org/10.1007/s11082-005-4214-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-005-4214-5

Keywords

Navigation