Skip to main content
Log in

Alternative formulation of carrier transport in spatially-dependent laser rate equations

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The level of accuracy of the conventional implementation of carrier transport into the quantum wells in spatially-dependent rate equations appears too high compared to the overall precision of rate equations. The dynamic description of the normalized carrier profile in the barrier region is of little use, since no stimulated interactions with the optical field occur in this region. Furthermore, it is only described by transverse diffusion and effects such as transport through the graded heterostructures formed by the mirror layers are neglected, which makes its accuracy disputable. Finally, this implementation nearly doubles the time required to solve the carrier rate equations. We propose therefore a more consistent model that still considers the dynamic evolution of the carrier population while assuming a time-invariant profile at the interface between the barrier and the quantum wells. This simplification both removes the requirement for unavailable parameters (such as the ambipolar diffusion coefficient in the barrier) and improves the numerical efficiency of the algorithm since only one additional ordinary differential equation needs be solved. The model is still capable of reproducing the influence of longitudinal transport on the modal distribution and high-frequency behavior of diode lasers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cavaillés, J.A., D.A.B. Miller et al. IEEE J. Quantum Electron. 28, 2486, 1992.

    Google Scholar 

  • Dellunde, J., M.C. Torrent et al. IEEE J. Quantum Electron. 33, 1197, 1997.

    Google Scholar 

  • Dellunde, J., A. Valle et al. J. Opt. Soc. Am. B 16, 2131, 1999.

    Google Scholar 

  • Dutta, N. K. J. Appl. Phys. 68, 1961, 1990.

    Google Scholar 

  • Gustavsson, J.S., J.A. Vukusic et al. IEEE J. Quantum Electron. 38, 203, 2002.

    Google Scholar 

  • Heinrich, J., E. Zeeb et al. IEEE Photon. Technol. Lett. 9, 1555, 1997.

    Google Scholar 

  • Jungo, M. VISTAS. Z #x00FC;rich, 2002.

  • Jungo, M. Konstanz, Hartung-Gorre Verlag, 2003.

  • Jungo, M., D. Erni et al. J. Opt. Soc. Am. B 20, 2262, 2003a.

    Google Scholar 

  • Jungo, M., D. Erni et al. Int. J. Numer. Model. 16, 143, 2003b.

    Google Scholar 

  • Jungo, M., D. Erni et al. IEEE J. Select. Topics Quantum Electron. 9, 939, 2003c.

    Google Scholar 

  • Keating, T., X. Jin et al. IEEE J. Quantum Electron. 35, 1526, 1999.

    Google Scholar 

  • Law, J.Y. IEEE Photon. Technol. Lett. 9, 437, 1997.

    Google Scholar 

  • Lefebvre, K.R. and A.F.M. Anwar. IEEE J. Quantum Electron. 33, 187, 1997.

    Google Scholar 

  • Mueller, R., A. Klehr et al. Semicond. Sci. Technol. 11, 587, 1996.

    Google Scholar 

  • Mulet, J. and S. Balle Phys. Rev. A XX, XX, 2002.

  • Nagarajan, R., M. Ishikawa et al. IEEE J. Quantum Electron. 28, 1990, 1992.

    Google Scholar 

  • Romero, B., J. Arias et al. Appl. Phys. Lett. 76, 1504, 2000.

    Google Scholar 

  • Satuby, Y. and M. Orenstein. IEEE J. Quantum Electron. 35, 944, 1999.

    Google Scholar 

  • Sze, S. M. Physics of Semiconductor Devices. New York, John Wiley & Sons, 1981.

  • Torre, M.S., C. Masoller et al. Phys. Rev. A 66, 053817, 2002.

    Google Scholar 

  • Valle, A. IEEE J. Quantum Electron. 34, 1924, 1998.

    Google Scholar 

  • Valle, A., J. Sarma et al. IEEE J. Quantum Electron. 31, 1423, 1995.

    Google Scholar 

  • Wilt, D., K.Y. Lau et al. J. Appl. Phys. 52, 4970, 1981.

    Google Scholar 

  • Yu, S.F., W.N. Wong et al. IEEE J. Quantum Electron. 32, 2139, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jungo, M., Erni, D. & Baechtold, W. Alternative formulation of carrier transport in spatially-dependent laser rate equations. Optical and Quantum Electronics 36, 881–891 (2004). https://doi.org/10.1007/s11082-004-4955-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-004-4955-6

Navigation