Skip to main content
Log in

Direct and inverse problems of fractional Sturm–Liouville equation

  • Research Article
  • Published:
Optimization and Engineering Aims and scope Submit manuscript

Abstract

In this paper we define a fractional Sturm–Liouville problem (FSLP) on [0, 1] subject to dirichlet boundary condition. First we discretize FSLP to obtain the corresponding matrix eigenvalue problem (MEP) of finite order N. In direct problem we give an efficient numerical algorithm to make good approximations for eigenvalues of FSLP by adding a correction term to eigenvalues of MEP. For inverse problem, using the idea of correction technique, we propose an algorithm for recovering the symmetric potential function using one given spectrum. Finally, we give some numerical examples to show the efficiency of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

We don’t have any research data outside the submitted manuscript file.

References

  • Aboelenen T, Bakr SA, El-Hawary HM (2017) Fractional Laguerre spectral methods and their applications to fractional differential equations on unbounded domain. Int J Comput Math 94(3):570–596

    Article  MathSciNet  Google Scholar 

  • Andrew AL (2006) Computing Sturm–Liouville potentials from two spectra. Inverse Prob 22:2069–2081

    Article  MathSciNet  Google Scholar 

  • Andrew AL (2005) Numerov’s method for inverse Sturm–Liouville problems. Inverse Prob 21:223–238

    Article  MathSciNet  Google Scholar 

  • Chigansky P, Kleptsyna M (2021) Sharp asymptotics in a fractional Sturm–Liouville problem. Fract Calc Appl Anal 24:715–738

    Article  MathSciNet  Google Scholar 

  • Ciesielski M, Klimek M, Blaszczyk T (2017) The fractional Sturm–Liouville problem-numerical approximation and application in fractional diffusion. J Comput Appl Math 317:573–588

    Article  MathSciNet  Google Scholar 

  • Dehghan M, Mingarelli AB (2020) Fractional Sturm–Liouville eigenvalue problems, I. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Mateáticas 114:46

  • Diethelm K (2010) The analysis of fractional differential equations. Springer, Berlin

    Book  Google Scholar 

  • Freiling G, Yurko VA (2001) Inverse Sturm–Liouville problems and their applications. NOVA Science Publications, New York

    Google Scholar 

  • Gao Q, Zhao Q, Chen M (2017) On a modified Numerov’s method for inverse Sturm–Liouville problems. Int J Comput Math 95(2):412–426

    Article  MathSciNet  Google Scholar 

  • Gao Q, Zhao Q, Zheng X, Ling Y (2014) Convergence of Numerov’s method for inverse Sturm-Liouville problems. Appl Math Comput 7; 293:1–17

  • Gao Q, Huang Z, Cheng HX (2015) A finite difference method for an inverse Sturm–Liouville problem in impedance form. Numer. Algor. 70:669–690

    Article  MathSciNet  Google Scholar 

  • Gladwell GLM (2004) Inverse problem in vibration. Kluwer, New York

    Google Scholar 

  • Jin B, Rundell W (2012) An inverse Sturm–Liouville problem with a fractional derivative. J. Comput. Phys. 231:4954–4966

    Article  MathSciNet  Google Scholar 

  • Jin B, Lazarov R, Pasciak J, Rundell W (2013) A finite element method for the fractional Sturm–Liouville problem. https://doi.org/10.48550/arxiv.1307.5114

  • Kashfi M, Akbarfam AJ (2021) An efficient numerical method for estimating eigenvalues and eigenfunctions of fractional Sturm–Liouville problems. Math Comput Simul 185:547–569

    Article  MathSciNet  Google Scholar 

  • Kavooci Z, Ghanbari K, Mirzaei H (2022) New form of Laguerre fractional differential equation and applications. Turk J Math 46(7):2998–3010

    Article  MathSciNet  Google Scholar 

  • Khosravian H, Eslahchi MR (2021) Mntz Sturm–Liouville problems: theory and numerical experiments. Fract Calc Appl Anal 24:775–817

    Article  MathSciNet  Google Scholar 

  • Kilbas AA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations. North-Holland mathematics studies. Elsevier Science, 204

  • Klimek M, Ciesielski M, Blaszczyk T (2018) Exact and numerical solutions of the fractional Sturm–Liouville problem. Fract Calc Appl Anal 21(1):45–71

    Article  MathSciNet  Google Scholar 

  • Klimek M, Agrawal OP (2013) Fractional Sturm–Liouville problem. Comput Math Appl 66:795–812

    Article  MathSciNet  Google Scholar 

  • Koyunbakan H (2023) Uniqueness of the potential in conformable Sturm– Liouville problem. Math Method Appl Sci 46(16):17461–17468

    Article  MathSciNet  Google Scholar 

  • Kravchenko VV (2019) On a method for solving the inverse Sturm–Liouville problem. J Inverse Ill-Posed Probl 209; 27(3):401–407

  • Ledoux V, Daele MV, Berghe GV (2005) Matslise: a Matlab package for the numerical solution of Sturm–Liouville and Schrodinger equations. ACM Translat Math. Softw. 31:532–554

    Article  MathSciNet  Google Scholar 

  • Magin RL (2006) Fractional calculus in bioengineering. Begell House publisher, CT

  • Metzler R, Nonnenmacher TF (2002) Space and time-fractional diffusion and wave equations, fractional Fokker–Planck equations, and physical motivations. Chem Phys 284(1–2):67–90

    Article  Google Scholar 

  • Metzler R, Klafter J (2004) The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J Phys A: Math Gen 37:R161–R208

    Article  MathSciNet  Google Scholar 

  • Pandey PK, Pandey RK, Agrawal OP (2020) Variational approximation for fractional Sturm–Liouville problem. Fract Calc Appl Anal 23:861–871

    Article  MathSciNet  Google Scholar 

  • Podlubny I (1999) Fractional differential equations. Academic Press, San Diego

    Google Scholar 

  • Schneider WR, Wyss W (1989) Fractional diffusion and wave equations. J Math Phys 30(1):134–144

    Article  MathSciNet  Google Scholar 

  • Saìdu A, Koyunbakan H (2023) Transmutation of conformable Sturm–Liouville operator with exactly solvable potential. Filomat 37(11):3383–3390

    MathSciNet  Google Scholar 

  • West BJ, Bologna M, Grigolini P (2003) Physics of fractal operators. Springer, New York

    Book  Google Scholar 

  • Zayernouri M, Karniadakis GE (2013) Fractional Sturm–Liouville eigen-problems: theory and numerical approximation. J Comput Phys 252:495–517

    Article  MathSciNet  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally in the preparation of the manuscript. H. Mirzaei wrote the main manuscript text. All authors reviewed the final version of the manuscript.

Corresponding author

Correspondence to Hanif Mirzaei.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Ethics approval and consent to participate

The authors consent to participate in this study.

Consent for publication

The authors give our consent for publication of this manuscript in the journal of Optimization and Engineering.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalashmi, Z.K., Mirzaei, H. & Ghanbari, K. Direct and inverse problems of fractional Sturm–Liouville equation. Optim Eng (2024). https://doi.org/10.1007/s11081-024-09881-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11081-024-09881-9

Keywords

Mathematics Subject Classification

Navigation