Skip to main content
Log in

Application of explicit energy bounds in optimization of 3D elastic structures

  • Research Article
  • Published:
Optimization and Engineering Aims and scope Submit manuscript

Abstract

We present a novel numerical method for calculating optimal design in topology optimization problems for 3D linear elastic structures. The algorithm is based on necessary conditions of optimality for problem which was obtained by relaxing the original one via the homogenization method in the sense of operators (G- or H-convergence), and can be implemented for self-adjoint problems. The method relies on recently obtained explicit expressions for the lower Hashin–Shtrikman bound on complementary energy and information on the microstructure that saturates the bound. We tested the algorithm on two benchmark examples, namely the cantilever and the bridge problem. The algorithm provides the solution in a first few iterations and the true composites appear in the optimal design. We also implement a penalization procedure to obtain classical design with slight increase of the cost functional.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akerson A, Bourdin B, Bhattacharya K (2022) Optimal design of responsive structures. Struct Multidiscip Optim 65:111. https://doi.org/10.1007/s00158-022-03200-5

    Article  MathSciNet  Google Scholar 

  • Allaire G (1994) Explicit lamination parameters for three-dimensional shape optimization. Control Cybern 23:309–326

    MathSciNet  MATH  Google Scholar 

  • Allaire G (2002) Shape optimization by the homogenization method. Springer, Berlin

    Book  MATH  Google Scholar 

  • Allaire G, Kohn RV (1993) Optimal bounds on the effective behavior of a mixture of two well-ordered elastic materials. Q Appl Math 51(4):643–674

    Article  MathSciNet  MATH  Google Scholar 

  • Allaire G, Kohn RV (1993) Explicit optimal bounds on the elastic energy of a two-phase composite in two space dimensions. Q Appl Math 51(4):675–699

    Article  MathSciNet  MATH  Google Scholar 

  • Allaire G, Kohn RV (1993) Optimal design for minimum weight and compliance in plane stress using extremal microstructures. Eur J Mech A/Solids 12(6):839–878

    MathSciNet  MATH  Google Scholar 

  • Allaire G, Bonnetier E, Francfort G, Jouve F (1997) Shape optimization by the homogenization method. Numer Math 76:27–68

    Article  MathSciNet  MATH  Google Scholar 

  • Allaire G, Aubry S, Jouve F (2001) Eigenfrequency optimization in optimal design. Comput Methods Appl Mech Eng 190(28):3565–3579

    Article  MathSciNet  MATH  Google Scholar 

  • Allaire G, Geoffroy-Donders P, Pantz O (2019) Topology optimization of modulated and oriented periodic microstructures by the homogenization method. Comput Math Appl 78:2197–2229

    Article  MathSciNet  MATH  Google Scholar 

  • Avellaneda M (1987) Optimal bounds and microgeometries for elastic two-phase composites. SIAM J Appl Math 47(6):1216–1228

    Article  MathSciNet  MATH  Google Scholar 

  • Bangerth W, Hartmann R, Kanschat G et al (2021) The deal.II library. http://www.dealii.org/

  • Bendsøe M (1995) Methods for optimization of structural topology, shape and material. Springer, Berlin

    Book  MATH  Google Scholar 

  • Bendsøe M, Diaz A (1994) Optimization of material properties for improved frequency response. Struct Optim 7:138–140

    Article  Google Scholar 

  • Bendsøe M, Sigmund O (2003) Topology optimization: theory, methods and applications, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

  • Burazin K (2018) On unique solutions of multiple-state optimal design problems on an annulus. J Optim Theory Appl 177:329–344

    Article  MathSciNet  MATH  Google Scholar 

  • Burazin K, Crnjac I (2020) Convergence of the optimality criteria method for multiple state optimal design problems. Comput Math Appl 79(5):1382–1392

    Article  MathSciNet  MATH  Google Scholar 

  • Burazin K, Vrdoljak M (2019) Exact solutions in optimal design problems for stationary diffusion equation. Acta Appl Math 161(1):71–88

    Article  MathSciNet  MATH  Google Scholar 

  • Burazin K, Crnjac I, Vrdoljak M (2018) Variant of optimality criteria method for multiple state optimal design problems. Commun Math Sci 16(6):1597–1614

    Article  MathSciNet  MATH  Google Scholar 

  • Burazin K, Crnjac I, Vrdoljak M (2021) Optimality criteria method in 2D linearized elasticity problems. Appl Numer Math 160:192–204

    Article  MathSciNet  MATH  Google Scholar 

  • Burazin K, Crnjac I, Vrdoljak M (2023) Explicit Hashin-Shtrikman bounds in 3D linearized elasticity, under review

  • Casado-Diaz J (2015) Some smoothness results for the optimal design of a two-composite material which minimizes the energy. Calc Var Partial Differ Equ 53:649–673

    Article  MathSciNet  MATH  Google Scholar 

  • Casado-Diaz J (2022) The maximization of the first eigenvalue for a two-phase material. Appl Math Optim. https://doi.org/10.1007/s00245-022-09825-8

    Article  MathSciNet  MATH  Google Scholar 

  • Casado-Díaz J, Castro C, Luna-Laynez M, Zuazua E (2011) Numerical approximation of a one-dimensional elliptic optimal design problem. Multiscale Model Simul 9:1181–1216

    Article  MathSciNet  MATH  Google Scholar 

  • Francfort G, Murat F (1986) Homogenization and optimal bounds in linear elasticity. Arch Rat Mech Anal 94:307–334

    Article  MathSciNet  MATH  Google Scholar 

  • Geoffroy-Donders P, Allaire G, Pantz O (2020) 3-d topology optimization of modulated and oriented periodic microstructures by the homogenization method. J Comput Phys 401:108994

    Article  MathSciNet  MATH  Google Scholar 

  • Gibianski L, Cherkaev A (1987) Microstructures of composites of extremal rigidity and exact bounds of the associated energy density. Ioffe Physicotechnical Institute preprint

  • Gibianski L, Cherkaev A (1997) Design of composite plates of extremal rigidity, Ioffe Physicotechnical Institute preprint, 1984 (english translation in: Topics in the mathematical modelling of composite materials, Ser. PNLDE, vol 31, Birkhauser, Basel, 95-137)

  • Groen JP, Sigmund O (2018) Homogenization based topology optimization for high resolution manufacturable microstructures. Int J Numer Methods Eng 113:1148–1163

    Article  MathSciNet  Google Scholar 

  • Hashin Z, Shtrikman S (1962) A variational approach to the theory of the effective magnetic permeability of multiphase materials. J Appl Phys 33:3125–3131

    Article  MATH  Google Scholar 

  • Hashin Z, Shtrikman S (1963) A variational approach to the theory of the elastic behaviour of multiphase materials. J Mech Phys Solids 11(2):127–140

    Article  MathSciNet  MATH  Google Scholar 

  • Kohn RV, Lipton R (1988) Optimal bounds for the effective energy of a mixture of isotropic, incompressible, elastic materials. Arch Rat Mech Anal 102:331–350

    Article  MathSciNet  MATH  Google Scholar 

  • Kohn R, Strang G (1986) Optimal design and relaxation of variational problems I–III. Commun Pure Appl Math 39:113–137, 139–182, 353–377

  • Lurie K (1970) On the optimal distribution of the resistivity tensor of the working substance in a magnetohydrodynamic channel. J Appl Math Mech (Prikladnaya Matematika i Mekhanika) 34(2):255–274 (in Russian)

    Article  MathSciNet  Google Scholar 

  • Lurie K, Cherkaev A (1984) Exact estimates of conductivity of composites formed by two isotropically conducting media, taken in prescribed proportion. Proc R Soc Edinb 99A:71–87

    Article  MathSciNet  MATH  Google Scholar 

  • Lurie K, Cherkaev A (1986) Effective characteristics of composite materials and the optimal design of structural elements. Uspekhi Mekhaniki 9:3–81

    MathSciNet  Google Scholar 

  • Lurie K, Cherkaev A, Fedorov A (1982) Regularization of optimal design problems for bars and plates I–II. J Optim Theory Appl 37:499–543

    Article  MathSciNet  MATH  Google Scholar 

  • Milton GW (1990) On characterizing the set of possible effective tensors of composites: the variational method and the translation method. Commun Pure Appl Math 43(1):63–125

    Article  MathSciNet  MATH  Google Scholar 

  • Milton GW (2002) The theory of composites. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Milton GW, Kohn RV (1988) Variational bounds on the effective moduli of anisotropic composites. J Mech Phys Solids 36:597–629

    Article  MathSciNet  MATH  Google Scholar 

  • Murat F, Tartar L (1985) Optimality conditions and homogenization. In: Marino A et al (eds) Nonlinear variational problems. Pitman, Boston, pp 1–8

    Google Scholar 

  • Murat F, Tartar L (1978) H-convergence. In: Séminaire d’Analyse Fonctionnelle et Numérique de l’Université d’Alger. Lecture Notes

  • Querin O, Victoria M, Alonso C, Loyola R, Montrull P (2017) Topology design methods for structural optimization. Elsevier, Amsterdam

    Google Scholar 

  • Raitums U (1978) The extension of extremal problems connected with a linear elliptic equation. Sov Math 19:1342–1345

    MATH  Google Scholar 

  • Rozvany G (1989) Structural design and optimality criteria. kluwer Academic Publishers, Alphen aan den Rijn

    Book  MATH  Google Scholar 

  • Save M, Prager W (1985) Structural optimization, volume 1 optimality criteria. In Warner W (ed). Plenum Press, New York

  • Tartar L (1975) Problèmes de contrôle des coefficients dans des équations aux dérivées partielles. In: Bensoussan A, Lions J-L (eds) Control theory, numerical methods and computer systems modelling, international symposium, Rocquencourt, June 1974. Lecture notes in economy and mathematical systems, vol 107. Springer, Berlin, pp 420–426

    Google Scholar 

  • Tartar L (1985) Estimations fines des coefficients homogénéisés, Ennio DeGiorgi colloquium (Paris, 1983). In: Krée P (ed) Research notes in mathematics, vol 125. Pitman, London, pp 168–187

    Google Scholar 

  • Tartar L (1986) Homogenization and effective moduli of materials and media. In: Ericsen JL et al (eds) Remarks on homogenization. Springer, Berlin, pp 228–246

    MATH  Google Scholar 

  • Vrdoljak M (2010) On Hashin–Shtrikman bounds for mixtures of two isotropic materials. Nonlinear Anal Real World Appl 11:4597–4606

    Article  MathSciNet  MATH  Google Scholar 

  • Vrdoljak M (2016) Classical optimal design in two-phase conductivity problems. SIAM J Control Optim 54(4):2020–2035

    Article  MathSciNet  MATH  Google Scholar 

  • Zhikov V, Kozlov S, Oleinik O (1994) Homogenization of differential operators and integral functionals. Springer, Berlin

    Google Scholar 

Download references

Acknowledgements

We would like to thank to Prof. Domagoj Matijević (School of Applied Mathematics and Computer Science, J. J. Strossmayer University of Osijek) who provided us with technical support for execution of parts of the algorithm.

Funding

This work has been supported in part by Croatian Science Foundation under the projects 8904 Homdirestroptcm.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivana Crnjac.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burazin, K., Crnjac, I. Application of explicit energy bounds in optimization of 3D elastic structures. Optim Eng (2023). https://doi.org/10.1007/s11081-023-09840-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11081-023-09840-w

Keywords

Mathematics Subject Classification

Navigation