Skip to main content
Log in

Fitting Laplacian regularized stratified Gaussian models

  • Research Article
  • Published:
Optimization and Engineering Aims and scope Submit manuscript

Abstract

We consider the problem of jointly estimating multiple related zero-mean Gaussian distributions from data. We propose to jointly estimate these covariance matrices using Laplacian regularized stratified model fitting, which includes loss and regularization terms for each covariance matrix, and also a term that encourages the different covariances matrices to be close. This method ‘borrows strength’ from the neighboring covariances, to improve its estimate. With well chosen hyper-parameters, such models can perform very well, especially in the low data regime. We propose a distributed method that scales to large problems, and illustrate the efficacy of the method with examples in finance, radar signal processing, and weather forecasting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Almgren R, Chriss N (2000) Optimal execution of portfolio transactions. J Risk 3:5–40

    Article  Google Scholar 

  • Anderson T (2003) An introduction to multivariate statistical analysis, 3rd edn. Wiley, Hoboken

    MATH  Google Scholar 

  • Banerjee O, El Ghaoui L, d’Aspremont A (2008) Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data. J Machine Learn Res 9:485–516

    MathSciNet  MATH  Google Scholar 

  • Bergin J, Techau P (2002) High-fidelity site-specific radar data set. In: Knowledge-aided sensor signal processing & expert reasoning workshop 2002

  • Bickel P, Levina E (2008) Covariance regularization by thresholding. The Ann Stat 36(6):2577–2604

    MathSciNet  MATH  Google Scholar 

  • Bishop C (2006) Pattern recognition and machine learning. Springer, Berlin

    MATH  Google Scholar 

  • Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Boyd S, Parikh N, Chu E, Peleato B, Eckstein J (2011) Distributed optimization and statistical learning via the alternating direction method of multipliers. Found Trends Machine Learn 3(1):1–122

    Article  Google Scholar 

  • Boyd S, Busseti E, Diamond S, Kahn R, Koh K, Nystrup P, Speth J (2017) Multi-period trading via convex optimization. Found Trends Opt 3(1):1–76

    Article  Google Scholar 

  • Burg J, Luenberger D, DWenger (1982) Estimation of structured covariance matrices. Proc IEEE 70(9):963–974

    Article  Google Scholar 

  • Cao G, Bouman C (2009) Covariance estimation for high dimensional data vectors using the sparse matrix transform. In: Koller D, Schuurmans D, Bengio Y, Bottou L (eds) Advances in neural information processing systems 21, Curran Associates, Inc., pp 225–232

  • Danaher P, Wang P, Witten D (2014) The joint graphical lasso for inverse covariance estimation across multiple classes. J Royal Stat Soc 76(2):373–397

    Article  MathSciNet  Google Scholar 

  • Deshmukh S, Dubey A (2020) Improved covariance matrix estimation with an application in portfolio optimization. IEEE Signal Process Lett 27:985–989

    Article  Google Scholar 

  • Eaton M (1983) Multivariate statistics: a vector space approach. Wiley, New York

    MATH  Google Scholar 

  • Engle R (1982) Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica 50(4):987–1007

    Article  MathSciNet  Google Scholar 

  • Fan J, Liao Y, Liu H (2016) An overview of the estimation of large covariance and precision matrices. Econom J 19(1):C1–C32

    Article  MathSciNet  Google Scholar 

  • Fazel M (2002) Matrix rank minimization with applications. PhD thesis, Stanford University

  • Flury B (1997) A First Course in Multivariate Statistics. Springer Texts in Statistics, Springer

  • Friedman J, Hastie T, Tibshirani R (2008) Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9(3):432–441

    Article  Google Scholar 

  • Guo J, Levina E, Michailidis G, Zhu J (2011) Joint estimation of multiple graphical models. Biometrika 98(1):1–15

    Article  MathSciNet  Google Scholar 

  • Hallac D, Leskovec J, Boyd S (2015) Network lasso: Clustering and optimization in large graphs. In: Proceedings of the ACM international conference on knowledge discovery and data mining, pp 387–396

  • Hallac D, Park Y, Boyd S, Leskovec J (2017) Network inference via the time-varying graphical lasso. In: Proceedings of the ACM international conference on knowledge discovery and data mining, pp 205–213

  • Hestenes MR, Stiefel E (1952) Methods of conjugate gradients for solving linear systems. J Res Nat Bureau Stand 49:409–435

    Article  MathSciNet  Google Scholar 

  • Hoffbeck J, Landgrebe D (1996) Covariance matrix estimation and classification with limited training data. IEEE Trans Pattern Anal Machine Intell 18(7):763–767

    Article  Google Scholar 

  • Kang B (2015) Robust covariance matrix estimation for radar space-time adaptive processing (stap). PhD thesis, The Pennsylvania state university

  • Kelner J, Orecchia L, Sidford A, Zhu Z (2013) A simple, combinatorial algorithm for solving sdd systems in nearly-linear time. In: Proceedings of the forty-fifth annual ACM symposium on theory of computing, association for computing machinery, New York, NY, USA, STOC ’13, p 911–920

  • Kernan W, Viscoli C, Makuch R, Brass L, Horwitz R (1999) Stratified randomization for clinical trials. J Clin Epidemiol 52(1):19–26

    Article  Google Scholar 

  • Koller D, Friedman N (2009) Probabilistic graphical models: principles and techniques. The MIT Press, USA

    MATH  Google Scholar 

  • Ledoit O, Wolf M (2003) Improved estimation of the covariance matrix of stock returns with an application to portfolio selection. J Empir Financ 10(5):603–621

    Article  Google Scholar 

  • Ledoit O, Wolf M (2020) The power of (non-)linear shrinking: a review and guide to covariance matrix estimation. J Financ Economet. https://doi.org/10.1093/jjfinec/nbaa007

    Article  MATH  Google Scholar 

  • Levitan E, GHerman (1987) A maximum a posteriori probability expectation maximization algorithm for image reconstruction in emission tomography. IEEE Trans Med Imaging 6(3):185–192

    Article  Google Scholar 

  • Li H, Stoica P, Li J (1999) Computationally efficient maximum likelihood estimation of structured covariance matrices. IEEE Trans Sig Process 47(5):1314–1323

    Article  MathSciNet  Google Scholar 

  • Ma J, Michailidis G (2016) Joint structural estimation of multiple graphical models. J Mach Learn Res 17(166):1–48

    MathSciNet  MATH  Google Scholar 

  • Markowitz H (1952) Portfolio selection. J Finan 7(1):77–91

    Google Scholar 

  • Melvin W (2004) A STAP overview. IEEE Aerospace Elect Syst Mag 19(1):19–35

    Article  Google Scholar 

  • Miller M, Snyder D (1987) The role of likelihood and entropy in incomplete-data problems: applications to estimating point-process intensities and toeplitz constrained covariances. Proceed IEEE 75(7):892–907

    Article  Google Scholar 

  • OpenWeather (2017) OpenWeather weather API. https://openweathermap.org/history

  • Parikh N, Boyd S (2014) Proximal algorithms. Found Trends Opt 1(3):127–239

    Article  Google Scholar 

  • Recht B, Fazel M, Parrilo P (2010) Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Rev 52(3):471–501

    Article  MathSciNet  Google Scholar 

  • Robey F, Fuhrmann D, Kelly E, Nitzberg R (1992) A CFAR adaptive matched filter detector. IEEE Trans Aerospace Elect Syst 28(1):208–216

    Article  Google Scholar 

  • Saegusa T, Shojaie A (2016) Joint estimation of precision matrices in heterogeneous populations. Elect J Stat 10(1):1341–1392. https://doi.org/10.1214/16-EJS1137

    Article  MathSciNet  MATH  Google Scholar 

  • Salari S, Chan F, Chan Y, Kim I, Cormier R (2019) Joint DOA and clutter covariance matrix estimation in compressive sensing MIMO radar. IEEE Trans Aerospace Electron Syst 55(1):318–331

    Article  Google Scholar 

  • Schneider T (2001) Analysis of incomplete climate data: estimation of mean values and covariance matrices and imputation of missing values. J Clim 14(5):853–871

    Article  Google Scholar 

  • Skaf J, Boyd S (2009) Multi-period portfolio optimization with constraints and transaction costs. Manuscript

  • Steiner M, Gerlach K (2000) Fast converging adaptive processor or a structured covariance matrix. IEEE Trans Aerospace Electron Syst 36(4):1115–1126

    Article  Google Scholar 

  • Sun Y, Babu P, Palomar D (2017) Majorization-minimization algorithms in signal processing, communications, and machine learning. IEEE Trans Signal Process 65(3):794–816

    Article  MathSciNet  Google Scholar 

  • Takapoui R, Javadi H (2016) Preconditioning via diagonal scaling. arXiv preprint arXiv:1610.03871

  • Tuck J, Boyd S (2021) Eigen-stratified models. Opt Eng. https://doi.org/10.1007/s11081-020-09592-x

    Article  MATH  Google Scholar 

  • Tuck J, Hallac D, Boyd S (2019) Distributed majorization-minimization for Laplacian regularized problems. IEEE/CAA J Autom Sinica 6(1):45–52

    Article  MathSciNet  Google Scholar 

  • Tuck J, Barratt S, Boyd S (2021) A distributed method for fitting Laplacian regularized stratified models. J Machine Learn Res Appear

  • Vandenberghe L, Boyd S (1996) Semidefinite programming. SIAM Rev 38(1):49–95

    Article  MathSciNet  Google Scholar 

  • Vishnoi N (2013) Lx= b. Found Trends Theoret Comput Sci 8(1–2):1–141

    Article  Google Scholar 

  • Wahlberg B, Boyd S, Annergren M, Wang Y (2012) An ADMM algorithm for a class of total variation regularized estimation problems. In: 16th IFAC symposium on system identification

  • Ward J (1995) Space-time adaptive processing for airborne radar. In: 1995 International conference on acoustics, speech, and signal processing, 5 2809–2812

  • Wicks M, Rangaswamy M, Adve R, Hale T (2006) Space-time adaptive processing: a knowledge-based perspective for airborne radar. IEEE Signal Process Mag 23(1):51–65

    Article  Google Scholar 

  • Witten D, Tibshirani R (2009) Covariance-regularized regression and classification for high dimensional problems. J Royal Stat Soc 71(3):615–636

    Article  MathSciNet  Google Scholar 

  • Zhu Y, Shen X, Pan W (2014) Structural pursuit over multiple undirected graphs. J Am Stat Assoc 109(508):1683–1696

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Jonathan Tuck is supported by the Stanford Graduate Fellowship in Science and Engineering. The authors thank Muralidhar Rangaswamy and Peter Stoica for helpful comments on an early draft of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Tuck.

Ethics declarations

Funding

J. Tuck is supported by the Stanford Graduate Fellowship.

Conflicts of interest

The authors declare that a possible conflict of interest is that S. Boyd is an author of this paper and an editor of this journal.

Availability of data and material

All data is made available at www.github.com/cvxgrp/strat_models.

Code availability

All code is made available at www.github.com/cvxgrp/strat_models.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuck, J., Boyd, S. Fitting Laplacian regularized stratified Gaussian models. Optim Eng 23, 895–915 (2022). https://doi.org/10.1007/s11081-021-09611-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11081-021-09611-5

Keywords

Navigation