Amini AA, Wainwright MJ (2009) High-dimensional analysis of semidefinite relaxations for sparse principal components. Ann Stat 37:2877–2921
MathSciNet
Article
Google Scholar
Aravkin A, Becker S (2016) Dual smoothing and value function techniques for variational matrix decomposition. Applications in Image and Video Processing, Handbook of Robust Low-Rank and Sparse Matrix Decomposition
Bah B, Tanner J (2010) Improved bounds on restricted isometry constants for gaussian matrices. SIAM J Matrix Anal Appl 31:2882–2898
MathSciNet
Article
Google Scholar
Beck A, Vaisbourd Y (2016) The sparse principal component analysis problem: optimality conditions and algorithms. J Optim Theory Algorithm 170:119–143
MathSciNet
Article
Google Scholar
Berk L, Bertsimas D (2019) Certifiably optimal sparse principal component analysis. Math Program Comput 11:381–420
MathSciNet
Article
Google Scholar
Bouwmans T, Sobral A, Javed S, Jung SK, Zahzah EH (2017) Decomposition into low-rank plus additive matrices for background/foreground separation: A review for a comparative evaluation with a large-scale dataset. Comput Sci Rev 23:1–71
Article
Google Scholar
Candès EJ, Li X, Ma Y, Wright J (2011) Robust principal component analysis? J ACM 58:Article 11
MathSciNet
Article
Google Scholar
Croux C, Filzmoser P, Fritz H (2013) Robust sparse principal component analysis. Technometrics 55:202–214
MathSciNet
Article
Google Scholar
d’Aspremont A, El Ghaoui L, Jordan MI, Lanckriet G (2007) A direct formulation for sparse PCA using semidefinite programming. SIAM Rev 49:434–448
MathSciNet
Article
Google Scholar
d’Aspremont A, Bach F, El Ghaoui L (2008) Optimal solutions for sparse principal component analysis. J Mach Learn Res 9:1269–1294
MathSciNet
MATH
Google Scholar
Hastie T, Tibshirani R, Wainwright M (2015) Statistical Learning with Sparsity: The Lasso and Generalizations. Chapman and Hall/CRC
Hubert M, Reynkens T, Schmitt E, Verdonck T (2016) Sparse PCA for high-dimensional data with outliers. Technometrics 58:424–434
MathSciNet
Article
Google Scholar
Jollife I (1986) Principal component analysis. Springer, New York
Book
Google Scholar
Jolliffe IT, Trendafilov NT, Uddin M (2003) A modified principal component technique based on the LASSO. J Comput Graph Stat 12(3):531–547
MathSciNet
Article
Google Scholar
Journée M, Nesterov Y, Richtárik P, Sepulchre R (2010) Generalized power method for sparse principal component analysis. J Mach Learn Res 11:517–553
MathSciNet
MATH
Google Scholar
Kwak N (2008) Principal component analysis based on \(l_1\) norm maximization. IEEE Trans Pattern Anal Mach Intell 30:1672–1680
MathSciNet
Article
Google Scholar
Lei J, Vu VQ (2015) Sparsity and agnostic inference in sparse pca. Ann Stat 43:299–322
MATH
Google Scholar
Lu Z, Zhang Y (2012) An augmented Lagrangian approach for sparse principal component analysis. Math Program Ser A 135:149–193. https://doi.org/10.1007/s10107-011-0452-4
MathSciNet
Article
MATH
Google Scholar
Luss R, Teboulle M (2013) Conditional gradient algorithms for rank-one matrix approximations with a sparsity constraint. SIAM Rev 55:65–98
MathSciNet
Article
Google Scholar
Mackey L (2008) Deflation methods for sparse PCA. Adv Neural Inf Process Syst 21:1017–1024
Google Scholar
Magdon-Ismail M (2017) Np-hardness and inapproximability of sparse PCA. Inf Process Lett 126:35–38
MathSciNet
Article
Google Scholar
Meng D, Zhao Q, Xu Z (2012) Improve robustness of sparse PCA by \(l_1\)-norm maximization. Pattern Recogn 45:487–497
Article
Google Scholar
Moghaddam B, Weiss Y, Avidan S (2006) Spectral bounds for sparse PCA: exact and greedy algorithms. In: Weiss Y, Schölkopf B, Platt J (eds) Advances in neural information processing systems. MIT Press, Cambridge, vol 18, pp 915–922
Qi X, Luo R, Zhao H (2013) Sparse principal component analysis by choice of norm. J Multivar Anal 114:127–160
MathSciNet
Article
Google Scholar
Richtárik P (2011) Finding sparse approximations to extreme eigenvectors: generalized power method for sparse PCA and extensions. In: Proceedings of signal processing with adaptive sparse structured representations
Shen H, Huang JZ (2008) Sparse principal component analysis via regularized low rank matrix approximation. J Multivar Anal 99(6):1015–1034
MathSciNet
Article
Google Scholar
Trendafilov NT (2016) From simple structure to sparse components: a review. Comput Stat 29:431–454
MathSciNet
Article
Google Scholar
Trendafilov NT, Jolliffe IT (2006) Projected gradient approach to the numerical solution of the scotlass. J Comput Stat Data Anal 50:242–253
MathSciNet
Article
Google Scholar
Vu VQ, Lei J (2013) Minimax sparse principal subspace estimation in high dimensions. Ann Stat 41:2905–2947
MathSciNet
Article
Google Scholar
Vu VQ, Cho J, Lei J, Rohe K (2013) Fantope projection and selection: a near-optimal convex relaxation of sparse PCA. In: Burges CJC, Bottou L, Welling M, Ghahramani Z, Weinberger KQ (eds) Advances in neural information processing systems, vol 26. Curran Associates, Red Hook, New York, pp 2670–2678
Witten DM, Tibshirani R, Hastie T (2009) A penalized matrix decomposition, with applicaitons to sparse principal components and canonical correlation analysis. Biostatistics 10:515–534
Article
Google Scholar
Zhang Y, El Ghaoui L (2011) Large-scale sparse principal component analysis with application to text data. Adv Neural Inf Process Syst 24:532–539
Google Scholar
Zou H, Hastie T, Tibshirani R (2006) Sparse principal component analysis. J Comput Graph Stat 15(2):265–286
MathSciNet
Article
Google Scholar