Skip to main content
Log in

A local search method for costly black-box problems and its application to CSP plant start-up optimization refinement

  • Research Article
  • Published:
Optimization and Engineering Aims and scope Submit manuscript

Abstract

A variety of engineering applications are tackled as black-box optimization problems where a computationally expensive and possibly noisy function is optimized over a continuous domain. In this paper we present a derivative-free local method which is well-suited for such problems, and we describe its application to the optimization of the start-up phase of an innovative Concentrated Solar Power (CSP) plant. The method, referred to as rqlif, exploits a regularized quadratic model and a linear implicit filtering strategy so as to be parsimonious in terms of function evaluations. After assessing the performance of rqlif on a set of analytical test problems in comparison with three well-known local algorithms, we apply it in conjunction with a global algorithm based on RBFs interpolation to the start-up optimization of the CSP plant developed in the PreFlexMS H2020 project. For the test problems, rqlif provides good quality solutions in a limited number of function evaluations. For the application, the global–local strategy yields a substantial improvement with respect to the reference solution and significantly reduces the thermo-mechanical stress suffered by the plant components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. The Matlab implementation of rqlif is freely available at http://rqlif.deib.polimi.it.

  2. The dynamic plant developped within the PreFlexMS project is interfaced with Matlab.

  3. Due to the premature suspension and ensuing termination of the PreFlexMS project, the optimization experiments are not reproducible because the simulation code is no longer available.

References

  • Abramson MA, Audet C, Dennis JE Jr, Digabel SL (2009) OrthoMADS: a deterministic MADS instance with orthogonal directions. SIAM J Optim 20(2):948–966

    MathSciNet  MATH  Google Scholar 

  • Aga V, Peruchena CF (2017) PreFlexMS: predictable flexible molten salts solar power plants. Impact 3:58–60

    Google Scholar 

  • Audet C, Dennis JE Jr (2006) Mesh adaptive direct search algorithms for constrained optimization. SIAM J Optim 17(1):188–217

    MathSciNet  MATH  Google Scholar 

  • Audet C, Hare W (2017) Derivative-free and blackbox optimization. Springer, New York

    MATH  Google Scholar 

  • Audet C, Kokkolaras M (2016) Blackbox and derivative-free optimization: theory, algorithms and applications. Optim Eng 177:1–2

    MathSciNet  MATH  Google Scholar 

  • Boukouvala F, Hasan MF, Floudas CA (2017) Global optimization of general constrained grey-box models: new method and its application to constrained PDEs for pressure swing adsorption. J Global Optim 67(1–2):3–42

    MathSciNet  MATH  Google Scholar 

  • Cammi A, Casella F, Ricotti ME, Schiavo F (2011) An object-oriented approach to simulation of iris dynamic response. Prog Nucl Energy 53(1):48–58

    Google Scholar 

  • Campana EF, Liuzzi G, Lucidi S, Peri D, Piccialli V, Pinto A (2009) New global optimization methods for ship design problems. Optim Eng 10(4):533

    MATH  Google Scholar 

  • Campana EF, Diez M, Iemma U, Liuzzi G, Lucidi S, Rinaldi F, Serani A (2016) Derivative-free global ship design optimization using global/local hybridization of the direct algorithm. Optim Eng 17(1):127–156

    MathSciNet  MATH  Google Scholar 

  • Capra F, Gazzani M, Joss L, Mazzotti M, Martelli E (2018) MO-MCS, a derivative-free algorithm for the multiobjective optimization of adsorption processes. Ind Eng Chem Res 57:9977–9993

    Google Scholar 

  • Casella F, Leva A (2006) Modelling of thermo-hydraulic power generation processes using modelica. Math Comput Model Dyn 12(1):19–33

    Google Scholar 

  • Casella F, Trabucchi S (2016) Object-oriented modelling and simulation of a molten-salt once-through steam generator for solar applications using open-source tools. In: 9th Eurosim congress on modelling and simulation EUROSIM 2016, IFAC, pp 1–6

  • Casella F, Farina M, Righetti F, Scattolini R, Faille D, Davelaar F, Tica A, Guéguen H, Dumur D, et al. (2011) An optimization procedure of the start-up of combined cycle power plants. In: 18th IFAC World Congress, IFAC, pp 7043–7048

  • Casella F, Mathijssen T, Colonna P, van Buijtenen J (2013) Dynamic modeling of organic rankine cycle power systems. J Eng Gas Turb Power 135(4):042310

    Google Scholar 

  • Cervantes A, Biegler LT (1998) Large-scale DAE optimization using a simultaneous NLP formulation. AIChE J 44(5):1038–1050

    Google Scholar 

  • Cervantes A, Biegler LT (2008) Optimization strategies for dynamic systems. In: Floudas CA, Pardalos PM (eds) Encyclopedia of optimization. Springer, New York, pp 2847–2858

    Google Scholar 

  • Cervantes AM, Biegler LT (2000) A stable elemental decomposition for dynamic process optimization. J Comput Appl Math 120(1–2):41–57

    MathSciNet  MATH  Google Scholar 

  • Choi T, Kelley CT (2000) Superlinear convergence and implicit filtering. SIAM J Optim 10(4):1149–1162

    MathSciNet  MATH  Google Scholar 

  • Cochran JJ, Cox Jr LA, Keskinocak P, Kharoufeh JP, Cole Smith J (2010) Direct search methods. Wiley Encyclopedia of Operations Research and Management Science. https://doi.org/10.1002/9780470400531

  • Conn AR, Scheinberg K, Toint PL (1997a) On the convergence of derivative-free methods for unconstrained optimization. In: Buhmann MD, Powell MJD, Buhmann MD, Iserles A et al (eds) Approximation theory and optimization: tributes to MJD Powell. Cambridge University Press, Cambridge, pp 83–108

    MATH  Google Scholar 

  • Conn AR, Scheinberg K, Toint PL (1997b) Recent progress in unconstrained nonlinear optimization without derivatives. Math Program 79(1–3):397

    MathSciNet  MATH  Google Scholar 

  • Conn AR, Gould NI, Toint P (2000) Trust region methods, vol 1. SIAM, Philadelphia

    MATH  Google Scholar 

  • Conn AR, Scheinberg K, Vicente LN (2009) Introduction to derivative-free optimization, vol 8. SIAM, Philadelphia

    MATH  Google Scholar 

  • Costa A, Nannicini G, Schroepfer T, Wortmann T (2015) Black-box optimization of lighting simulation in architectural design. In: Cardin M-A, Krob D, Lui PC, Tan YH, Wood K (eds) Complex systems design & management Asia. Springer, New York, pp 27–39

    Google Scholar 

  • Custódio AL, Vicente LN (2007) Using sampling and simplex derivatives in pattern search methods. SIAM J Optim 18(2):537–555

    MathSciNet  MATH  Google Scholar 

  • De Boor C (1978) A practical guide to splines, vol 27. Springer, New York

    MATH  Google Scholar 

  • De Leone R, Gaudioso M, Grippo L (1984) Stopping criteria for linesearch methods without derivatives. Math Program 30(3):285–300

    MathSciNet  MATH  Google Scholar 

  • Dolan ED, Moré JJ (2002) Benchmarking optimization software with performance profiles. Math Program 91(2):201–213

    MathSciNet  MATH  Google Scholar 

  • Faille D, Davelaar F (2009) Model based start-up optimization of a combined cycle power plant. IFAC Proc 42(9):197–202

    Google Scholar 

  • Fasano G, Morales JL, Nocedal J (2009) On the geometry phase in model-based algorithms for derivative-free optimization. Optim Method Softw 24(1):145–154

    MathSciNet  MATH  Google Scholar 

  • Fritzson P, Aronsson P, Lundvall H, Nyström K, Pop A, Saldamli L, Broman D (2005) The openmodelica modeling, simulation, and software development environment. Simul News Eur 44:8–16

    Google Scholar 

  • Gilmore P, Kelley CT (1995) An implicit filtering algorithm for optimization of functions with many local minima. SIAM J Optim 5(2):269–285

    MathSciNet  MATH  Google Scholar 

  • Gould NI, Orban D, Toint PL (2003) CUTEr and SifDec: a constrained and unconstrained testing environment, revisited. ACM Trans Math Softw (TOMS) 29(4):373–394

    MATH  Google Scholar 

  • Grippo L, Lampariello F, Lucidi S (1988) Global convergence and stabilization of unconstrained minimization methods without derivatives. J Optim Theory App 56(3):385–406

    MathSciNet  MATH  Google Scholar 

  • Gutmann HM (2001) A radial basis function method for global optimization. J Global Optim 19(3):201–227

    MathSciNet  MATH  Google Scholar 

  • Hellstrom T, Holmström K (1999) Parameter tuning in trading algorithms using ASTA. Comput Finance 1:343–357

    Google Scholar 

  • Hestenes MR (2012) Conjugate direction methods in optimization, vol 12. Springer, New York

    MATH  Google Scholar 

  • Ho CK (2017) Advances in central receivers for concentrating solar applications. Sol Energy 152:38–56

    Google Scholar 

  • Holmström K (1999) The TOMLAB optimization environment in Matlab. https://tomopt.com/

  • Holmström K (2005) An Adaptive Radial Basis Algorithm (ARBF) for Mixed-Integer Expensive Constrained Global Optimization. In: International workshop on global optimization, pp 133–140

  • Holmström K (2008) An adaptive radial basis algorithm (ARBF) for expensive black-box global optimization. J Global Optim 41(3):447–464

    MathSciNet  MATH  Google Scholar 

  • Hooke R, Jeeves TA (1961) ”Direct search” solution of numerical and statistical problems. J ACM 8(2):212–229

    MATH  Google Scholar 

  • Huyer W, Neumaier A (1999) Global optimization by multilevel coordinate search. J Global Optim 14(4):331–355

    MathSciNet  MATH  Google Scholar 

  • Jones DR, Schonlau M, Welch WJ (1998) Efficient global optimization of expensive black-box functions. J Global Optim 13(4):455–492

    MathSciNet  MATH  Google Scholar 

  • Kelley C (1999a) Detection and remediation of stagnation in the Nelder-Mead algorithm using a sufficient decrease condition. SIAM J Optim 10(1):43–55

    MathSciNet  MATH  Google Scholar 

  • Kelley CT (1999b) Iterative methods for optimization, vol 8. SIAM, Philadelphia

    MATH  Google Scholar 

  • Kolda TG, Lewis RM, Torczon V (2003) Optimization by direct search: new perspectives on some classical and modern methods. SIAM Rev 45(3):385–482

    MathSciNet  MATH  Google Scholar 

  • Krüger K, Franke R, Rode M (2004) Optimization of boiler start-up using a nonlinear boiler model and hard constraints. Energy 29(12–15):2239–2251

    Google Scholar 

  • Le Besnerais J, Fasquelle A, Lanfranchi V, Hecquet M, Brochet P (2011) Mixed-variable optimal design of induction motors including efficiency, noise and thermal criteria. Optim Eng 12(1–2):55–72

    MATH  Google Scholar 

  • Le Digabel S (2011) Algorithm 909: NOMAD: nonlinear optimization with the MADS algorithm. ACM Trans Math Software (TOMS) 37(4):1–15

    MathSciNet  MATH  Google Scholar 

  • Liuzzi G, Lucidi S, Piccialli V (2016) Exploiting derivative-free local searches in direct-type algorithms for global optimization. Comput Optim Appl 65(2):449–475

    MathSciNet  MATH  Google Scholar 

  • Lovegrove K, Stein W (2012) Concentrating solar power technology: principles, developments and applications. Elsevier, Amsterdam

    Google Scholar 

  • Lucidi S, Sciandrone M (2002a) A derivative-free algorithm for bound constrained optimization. Comput Optim Appl 21(2):119–142

    MathSciNet  MATH  Google Scholar 

  • Lucidi S, Sciandrone M (2002b) On the global convergence of derivative-free methods for unconstrained optimization. SIAM J Optim 13(1):97–116

    MathSciNet  MATH  Google Scholar 

  • Luus R (1993) Piecewise linear continuous optimal control by iterative dynamic programming. Ind Eng Chem Res 32(5):859–865

    Google Scholar 

  • Madsen JI, Langthjem M (2001) Multifidelity response surface approximations for the optimum design of diffuser flows. Optim Eng 2(4):453–468

    MATH  Google Scholar 

  • Martelli E, Amaldi E (2014) PGS-COM: a hybrid method for constrained non-smooth black-box optimization problems: brief review, novel algorithm and comparative evaluation. Comput Chem Eng 63:108–139

    Google Scholar 

  • Meo M, Zumpano G (2008) Damage assessment on plate-like structures using a global–local optimization approach. Optim Eng 9(2):161–177

    MathSciNet  MATH  Google Scholar 

  • Misener R, Floudas CA (2014) ANTIGONE: algorithms for continuous/integer global optimization of nonlinear equations. J Global Optim 59(2–3):503–526

    MathSciNet  MATH  Google Scholar 

  • Moré JJ, Wild SM (2009) Benchmarking derivative-free optimization algorithms. SIAM J Optim 20(1):172–191

    MathSciNet  MATH  Google Scholar 

  • Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7(4):308–313

    MathSciNet  MATH  Google Scholar 

  • Olivero M, Pasquale D, Ghidoni A, Rebay S (2014) Three-dimensional turbulent optimization of vaned diffusers for centrifugal compressors based on metamodel-assisted genetic algorithms. Optim Eng 15(4):973–992

    Google Scholar 

  • Peeters J, Louarroudi E, Bogaerts B, Sels S, Dirckx J, Steenackers G (2018) Active thermography setup updating for nde: a comparative study of regression techniques and optimisation routines with high contrast parameter influences for thermal problems. Optim Eng 19(1):163–185

    Google Scholar 

  • Pontryagin LS (2018) Mathematical theory of optimal processes. Routledge, Abingdon

    Google Scholar 

  • Porcelli M, Toint PL (2017) BFO, a trainable derivative-free brute force optimizer for nonlinear bound-constrained optimization and equilibrium computations with continuous and discrete variables. ACM Trans Math Software 44(1):6

    MathSciNet  MATH  Google Scholar 

  • Powell MJ (1994) A direct search optimization method that models the objective and constraint functions by linear interpolation. In: Gomez S, Hennart J-P (eds) Advances in optimization and numerical analysis. Springer, Berlin, pp 51–67

    Google Scholar 

  • Powell MJ (1999) Recent research at Cambridge on radial basis functions. In: Müller MW, Buhmann MD, Mache D, Felten M (eds) New developments in approximation theory. Springer, New York, pp 215–232

    Google Scholar 

  • Powell MJ (2002) UOBYQA: unconstrained optimization by quadratic approximation. Math Program 92(3):555–582

    MathSciNet  MATH  Google Scholar 

  • Powell MJ (2006) The NEWUOA software for unconstrained optimization without derivatives. In: Di Pillo G, Roma M (eds) Large-scale nonlinear optimization. Springer, Berlin, pp 255–297

    Google Scholar 

  • Rios LM, Sahinidis NV (2013) Derivative-free optimization: a review of algorithms and comparison of software implementations. J Global Optim 56(3):1247–1293

    MathSciNet  MATH  Google Scholar 

  • Schulz VH, Bock HG, Steinbach MC (1998) Exploiting invariants in the numerical solution of multipoint boundary value problems for dae. SIAM J Sci Comput 19(2):440–467

    MathSciNet  MATH  Google Scholar 

  • Stoppato A, Mirandola A, Meneghetti G, Casto EL (2012) On the operation strategy of steam power plants working at variable load: technical and economic issues. Energy 37(1):228–236

    Google Scholar 

  • Taler J, Dzierwa P, Taler D, Harchut P (2015) Optimization of the boiler start-up taking into account thermal stresses. Energy 92:160–170

    Google Scholar 

  • Tseng P (1999) Fortified-descent simplicial search method: a general approach. SIAM J Optim 10(1):269–288

    MathSciNet  MATH  Google Scholar 

  • Vassiliadis V, Sargent R, Pantelides C (1994a) Solution of a class of multistage dynamic optimization problems. 1. Problems without path constraints. Ind Eng Chem Res 33(9):2111–2122

    Google Scholar 

  • Vassiliadis V, Sargent R, Pantelides C (1994b) Solution of a class of multistage dynamic optimization problems. 2. Problems with path constraints. Ind Eng Chem Res 33(9):2123–2133

    Google Scholar 

  • Wetter M, Wright J (2004) A comparison of deterministic and probabilistic optimization algorithms for nonsmooth simulation-based optimization. Build Environ 39(8):989–999

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Manno.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manno, A., Amaldi, E., Casella, F. et al. A local search method for costly black-box problems and its application to CSP plant start-up optimization refinement. Optim Eng 21, 1563–1598 (2020). https://doi.org/10.1007/s11081-020-09488-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11081-020-09488-w

Keywords

Navigation