Skip to main content

Gradient based biobjective shape optimization to improve reliability and cost of ceramic components

Abstract

We consider the simultaneous optimization of the reliability and the cost of a ceramic component in a biobjective PDE constrained shape optimization problem. A probabilistic Weibull-type model is used to assess the probability of failure of the component under tensile load, while the cost is assumed to be proportional to the volume of the component. Two different gradient-based optimization methods are suggested and compared at 2D test cases. The numerical implementation is based on a first discretize then optimize strategy and benefits from efficient gradient computations using adjoint equations. The resulting approximations of the Pareto front nicely exhibit the trade-off between reliability and cost and give rise to innovative shapes that compromise between these conflicting objectives.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  • Allaire G (2001) Shape opimization by the homogenisation method. Springer, New York

    Google Scholar 

  • Allaire G, Jouve F (2008) Minimum stress optimal design with the level set method. Eng Anal Bound Elem 32:909–918

    Article  Google Scholar 

  • Bäker M, Harders H, Rösler J (2008) Mechanisches Verhalten der Werkstoffe, 3rd edn. Vieweg+Teubner

  • Bazaraa MS, Sherali HD, Shetty CM (2006) Nonlinear programming—theory and algorithms, 3rd edn. Wiley, Hoboken

    Book  Google Scholar 

  • Bolten M, Gottschalk H, Schmitz S (2015) Minimal failure probability for ceramic design via shape control. J Optim Theory Appl 983–1001

  • Bolten M, Gottschalk H, Hahn C, Saadi M (2019) Numerical shape optimization to decrease failure probability of ceramic structures. Comput Visualization Sci. https://doi.org/10.1007/s00791-019-00315-z

    Article  MathSciNet  Google Scholar 

  • Braess D (1997) Finite elements. Theory, fast solvers, and applications in solid mechanics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Brückner-Foit A, Fett T, Munz D, Schirmer K (1997) Discrimination of multiaxiality criteria with the Brasilian disk test. J Eur Ceram Soc 17:689–696

    Article  Google Scholar 

  • Bucur D, Buttazzo G (2005) Variational methods in shape optimization problems. Birkhäuser, Boston

    Book  Google Scholar 

  • Chenais D (1975) On the existence of a solution in a domain identification problem. J Math Anal Appl 52:189–289

    Article  MathSciNet  Google Scholar 

  • Chirkov D, Ankudinova A, Kryukov A, Cherny S, Skorospelov V (2018) Multi-objective shape optimization of a hydraulic turbine runner using efficiency, strength and weight criteria. Struct Multidiscip Optim 58:627–640

    Article  Google Scholar 

  • Conti S, Held H, Pach M, Rumpf M, Schultz R (2008) Shape optimization under uncertainty - a stochastic programming perspective. SIAM J Optim 19(4):1610–1632

    Article  MathSciNet  Google Scholar 

  • Das I, Dennis JE (1997) A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems. Struct Optim 14(1):63–69. https://doi.org/10.1007/BF01197559

    Article  Google Scholar 

  • Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, Chichester

    MATH  Google Scholar 

  • Deb K, Goel T (2002) Multi-objective evolutionary algorithms for engineering shape design. In: Evolutionary optimization, vol 48. International Series in Operations Research & Management Science. Springer, Boston, MA, pp 147–175

  • Delfour M, Zolésio JP (2011) Shape and geometries: analysis, differential calculus, and optimization, 2nd edn. SIAM, Philadelphia

    Book  Google Scholar 

  • Désidéri JA (2009) Multiple-gradient descent algorithm (MGDA). Research Report 00389811, INRIA. https://hal.inria.fr/inria-00389811

  • Désidéri JA (2012) Multiple-gradient descent algorithm (MGDA) for multiobjective optimization. CR Math 350:313–318

    MathSciNet  MATH  Google Scholar 

  • Duran RG, Muschietti MA (2004) The Korn inequality for Jones domains. Electron J Differ Equ 127:1–10

    MathSciNet  MATH  Google Scholar 

  • Duysinx P, Bendsœ M (1998) Topology optimization of continuum structures with local stress constraints. Int J Numer Methods Eng 43(8):1453–1478

    Article  MathSciNet  Google Scholar 

  • Ehrgott M (2005) Multicriteria Optimization, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

  • Eppler K (2017) On Hadamard shape gradient representations in linear elasticity. Unpublished manuscript

  • Eppler K, Harbrecht H, Schneider R (2007) On convergence in elliptic shape optimization. SIAM J Control Optim 45:61–83

    Article  MathSciNet  Google Scholar 

  • Fliege J, Svaiter BF (2000) Steepest descent methods for multicriteria optimization. Math Methods Oper Res 51(3):479–494. https://doi.org/10.1007/s001860000043

    Article  MathSciNet  MATH  Google Scholar 

  • Fliege J, Vaz A, Vicente L (2018) Complexity of gradient descent for multiobjective optimization. Optim Methods Softw. https://doi.org/10.1080/10556788.2018.1510928 To appear

  • Fujii N (1988) Lower semicontinuity in domain optimization problems. J Optim Theory Appl 59:407–422

    Article  MathSciNet  Google Scholar 

  • Giacomini M, Désidéri JA, Duvigneau R (2014) Comparison of multiobjective gradient-based methods for structural shape optimization. Tech. Rep. RR-8511, INRIA

  • Gottschalk H, Saadi M (2019) Shape gradients for the failure probability of a mechanical component under cyclical loading. Comput Mech 4:1–21

    MATH  Google Scholar 

  • Gottschalk H, Schmitz S (2015) Optimal reliability in design for fatigue life. SIAM J Control Optim 52(5):2727–2752

    Article  MathSciNet  Google Scholar 

  • Gottschalk H, Saadi M, Doganay O, Klamroth K, Schmitz S (2018) Adjoint method to calculate the shape gradients of failure probabilities for turbomachinery components. ASME TURBO-Expo GT2018-75759

  • Gross D, Seelig T (2006) Fracture mechanics. With an introduction to micromechanics. Springer, Berlin

    MATH  Google Scholar 

  • Haslinger J, Mäkinen RAE (2003) Introduction to shape optimization. SIAM, Philadelphia

    Book  Google Scholar 

  • Kallenberg O (1983) Random measures. Akademie-Verlag, Berlin

    MATH  Google Scholar 

  • Laurain A, Sturm K (2016) Distributed shape derivative via averaged adjoint method and applications. ESAIM Math Model Numer Anal 50(4):1241–1267

    Article  MathSciNet  Google Scholar 

  • Michor PW, Mumford D (2006) Riemannian geometries on spaces of planar curves. J Eur Math Soc 8:1–48

    Article  Google Scholar 

  • Miettinen K (1999) Nonlinear multiobjective optimization. Kluwer Academic Publishers, Boston

    MATH  Google Scholar 

  • Morell R (2004) Brevier technical ceramics. Tech. rep., Verband der Keramischen Industrie e.V, Information Center Technical Ceramics. http://www.keramverband.de/brevier_engl/brevier.htm

  • Munz D, Fett T (2001) Ceramics—mechanical properties, failure behaviour, materials selection. Springer, Berlin

    Google Scholar 

  • Picelli R, Townsend S, Brampton C, Noratoc J, Kimad HA (2018) Stress-based shape and topology optimization with the level set method. Comput Methods Appl Mech Eng 329:1–23

    Article  MathSciNet  Google Scholar 

  • Piegl L, Tiller W (2000) The NURBS book. Monographs in visual communication. Springer, Berlin

    MATH  Google Scholar 

  • Pulliam T, Nemec M, Holst T, Zingg D (2003) Comparison of evolutionary (genetic) algorithm and adjoint methods for multi-objective viscous airfoil optimization. In: 41st Aerospace science meeting and exhibit, 6–9 January 2003, Reno, Nevada, no. 2003-0298 in AIAA Paper

  • Roudi S, Riesch-Oppermann H, Kraft O (2005) Advanced probabilistic tools for the uncertainty assessment in failure and lifetime prediction of ceramic components. Materialwissenschaften u. Werkstofftechnik 36:171–176

    Article  Google Scholar 

  • Schandl B, Klamroth K, Wiecek M (2002) Norm-based approximation in multicriteria programming. Comput Math Appl 44:925–942

    Article  MathSciNet  Google Scholar 

  • Schmitz S (2014) A local and probabilistic model for low-cycle fatigue.: new aspects of structural analysis. Hartung-Gorre,

  • Schmitz S, Beck T, Krause R, Rollmann G, Seibel T, Gottschalk H (2013a) A probabilistic model for LCF. Comput Mater Sci 79:584–590

    Article  Google Scholar 

  • Schmitz S, Seibel T, Gottschalk H, Beck T, Rollmann G, Krause R (2013b) Probabilistic analysis of the LCF crack initiation life for a turbine blade under thermo-mechanical loading. Proc. Int. Conf LCF 7

  • Schulz V (2014) A Riemannian view on shape optimization. Foundations of Computational Mathematics 14(3):483–501

    Article  MathSciNet  Google Scholar 

  • Schulz V (2016) Efficient PDE constrained shape optimization based on Steklov–Poincaré-type metrics. SIAM J Optim 26(4):2800–2819

    Article  MathSciNet  Google Scholar 

  • Shackelford J, Alexander W (eds) (2015) CRC materials science and engineering handbook, 4th edn. CRC Press LLC

  • Sokolovski J, Zolesio JP (1992) Introduction to shape optimization—shape sensitivity analysis. Springer, Berlin

    Book  Google Scholar 

  • Watanabe S (1964) On discontinuous additive functionals and Lévy measures of a Markov process. Jpn J Math 34

  • Weibull E (1939) A statistical theory of the strength of materials. Ingeniörsvetenskapsakedemiens Handlingar 151:1–45

    Google Scholar 

  • Zavala G, Nebro A, Luna F, Coello Coello C (2014) A survey of multi-objective metaheuristics applied to structural optimization. Struct Multidiscip Optim 49:537–558

    Article  MathSciNet  Google Scholar 

  • Zerbinati A, Minelli A, Ghalane I, Désidéri J (2014) Meta-model-assisted MGDA for multi-objective functional optimization. Comput Fluids 102:116–130

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the federal ministry of research and education (BMBF, Grant-No. 05M18PXA ) as a part of the GIVEN consortium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. T. Doganay.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Doganay, O.T., Gottschalk, H., Hahn, C. et al. Gradient based biobjective shape optimization to improve reliability and cost of ceramic components. Optim Eng 21, 1359–1387 (2020). https://doi.org/10.1007/s11081-019-09478-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11081-019-09478-7

Keywords

  • Biobjective shape optimization
  • Shape gradients
  • Probability of failure
  • Descent algorithms

Mathematics Subject Classification

  • 90B50
  • 49Q10
  • 65C50
  • 60G55