Skip to main content
Log in

On the robustness and scalability of semidefinite relaxation for optimal power flow problems

  • Research Article
  • Published:
Optimization and Engineering Aims and scope Submit manuscript

Abstract

Semidefinite relaxation techniques have shown great promise for nonconvex optimal power flow problems. However, a number of independent numerical experiments have led to concerns about scalability and robustness of existing SDP solvers. To address these concerns, we investigate some numerical aspects of the problem and compare different state-of-the-art solvers. Our results demonstrate that semidefinite relaxations of large problem instances with on the order of 10,000 buses can be solved reliably and to reasonable accuracy within minutes. Furthermore, the semidefinite relaxation of a test case with 25,000 buses can be solved reliably within half an hour; the largest test case with 82,000 buses is solved within 8 h. We also compare the lower bound obtained via semidefinite relaxation to locally optimal solutions obtained with nonlinear optimization methods and calculate the optimality gap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Andersen MS (2018) OPFSDR v0.2.3. https://git.io/opfsdr. Accessed 4 Sept 2018

  • Andersen MS, Hansson A, Vandenberghe L (2014) Reduced-complexity semidefinite relaxations of optimal power flow problems. IEEE Trans Power Syst 29(4):1855–1863

    Article  Google Scholar 

  • Bai X, Wei H, Fujisawa K, Wang Y (2008) Semidefinite programming for optimal power flow problems. Int J Electr Power Energy Syst 30(6–7):383–392

    Article  Google Scholar 

  • Bingane C, Anjos MF, Digabel SL (2018) Tight-and-cheap conic relaxation for the AC optimal power flow problem. IEEE Trans Power Syst 33:7181–7188

    Article  Google Scholar 

  • Birchfield AB, Xu T, Gegner KM, Shetye KS, Overbye TJ (2017) Grid structural characteristics as validation criteria for synthetic networks. IEEE Trans Power Syst 32(4):3258–3265

    Article  Google Scholar 

  • Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Byrd RH, Nocedal J, Waltz RA (2006) Knitro: an integrated package for nonlinear optimization. In: Pillo G, Roma M (eds) Large scale nonlinear optimization. Springer, Berlin, pp 35–59

    Chapter  MATH  Google Scholar 

  • Carpentier J (1962) Contribution á l’étude du dispatching économique. Bull de la Soc Fr Électr 3:431–447

    Google Scholar 

  • Coffrin C, Hijazi H, Van Hentenryck P (2016) The QC relaxation: a theoretical and computational study on optimal power flow. IEEE Trans Power Syst 31(4):3008–3018

    Article  Google Scholar 

  • Fukuda M, Kojima M, Murota K, Nakata K (2001) Exploiting sparsity in semidefinite programming via matrix completion I: general framework. SIAM J Optim 11(3):647–674

    Article  MathSciNet  MATH  Google Scholar 

  • Grant M, Boyd S (2008) Graph implementations for nonsmooth convex programs. In: Blondel V, Boyd S, Kimura H (eds) Recent advances in learning and control. Lecture notes in control and information sciences. Springer, Berlin, pp 95–110

    Chapter  Google Scholar 

  • Hijazi H, Coffrin C, Van Hentenryck P (2016) Polynomial SDP cuts for optimal power flow. In 19th Power Systems Computation Conference, PSCC 2016

  • Hijazi H, Coffrin C, Hentenryck PV (2017) Convex quadratic relaxations for mixed-integer nonlinear programs in power systems. Math Program Comput 9(3):321–367

    Article  MathSciNet  MATH  Google Scholar 

  • Jabr RA (2006) Radial distribution load flow using conic programming. IEEE Trans Power Syst 21(3):1458–1459

    Article  MathSciNet  Google Scholar 

  • Jabr RA (2012) Exploiting sparsity in SDP relaxations of the OPF problem. IEEE Trans Power Syst. 27(2):1138–1139

    Article  Google Scholar 

  • Josz C, Maeght J, Panciatici P, Gilbert JC (2015) Application of the moment-SOS approach to global optimization of the OPF problem. IEEE Trans Power Syst 30(1):463–470

    Article  Google Scholar 

  • Josz C, Fliscounakis S, Maeght J, Panciatici R (2016) AC power flow data in MATPOWER and QCQP format: iTesla, RTE snapshots, and PEGASE. arXiv:1603.01533v3

  • Kocuk B, Dey SS, Sun XA (2016) Strong socp relaxations for the optimal power flow problem. Oper Res 64(6):1177–1196

    Article  MathSciNet  MATH  Google Scholar 

  • Kourounis D, Fuchs A, Schenk O (2018) Toward the next generation of multiperiod optimal power flow solvers. IEEE Trans Power Syst 33(4):4005–4014

    Article  Google Scholar 

  • Lavaei J, Low SH (2012) Zero duality gap in optimal power flow problem. IEEE Trans Power Syst 27(1):92–107

    Article  Google Scholar 

  • Löfberg J (2004) YALMIP: a toolbox for modeling and optimization in MATLAB. In Proceedings of the CACSD Conference, Taipei, Taiwan

  • Low SH (2014a) Convex relaxation of optimal power flow—part I: formulations and equivalence. IEEE Trans Control Netw Syst 1(1):15–27

    Article  MathSciNet  MATH  Google Scholar 

  • Low SH (2014b) Convex relaxation of optimal power flow—part II: exactness. IEEE Trans Control Netw Syst 1(2):177–189

    Article  MathSciNet  MATH  Google Scholar 

  • Madani R, Kalbat A, Lavaei J (2017) A Low-Complexity Parallelizable Numerical Algorithm for Sparse Semidefinite Programming. In: IEEE Transactions on Control of Network Systems, vol 5, no 4. pp 1898–1909. https://doi.org/10.1109/TCNS.2017.2774008

  • Mak TWK, Shi L, Hentenryck PV (2018) Phase transitions for optimality gaps in optimal power flows a study on the French transmission network. arXiv:1807.05460

  • Mittelmann HD (2003) An independent benchmarking of SDP and SOCP solvers. Math Program 95(2):407–430

    Article  MathSciNet  MATH  Google Scholar 

  • Molzahn DK, Hiskens IA (2015) Sparsity-exploiting moment-based relaxations of the optimal power flow problem. IEEE Trans Power Syst 30(6):3168–3180

    Article  Google Scholar 

  • Molzahn DK, Holzer JT, Lesieutre BC, DeMarco CL (2013) Implementation of a large-scale optimal power flow solver based on semidefinite programming. IEEE Trans Power Syst 28(4):3987–3998

    Article  Google Scholar 

  • MOSEK (2015) MOSEK optimizer API for Python. https://docs.mosek.com/8.1/pythonapi/index.html

  • O’Donoghue B, Chu E, Parikh N, Boyd S (2016) Conic optimization via operator splitting and homogeneous self-dual embedding. J Optim Theory Appl 169(3):1042–1068

    Article  MathSciNet  MATH  Google Scholar 

  • PGLib-OPF (2018) Power Grid Lib—Optimal Power Flow v18.08. https://git.io/pglib-opf. Accessed 4 Sept 2018

  • Sturm JF (1999) Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim Methods Softw 11(1):625–653

    Article  MathSciNet  MATH  Google Scholar 

  • Taylor JA (2015) Convex optimization of power systems. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Toh KC, Todd MJ, Tütüncü RH (1999) SDPT3—a Matlab software package for semidefinite programming, version 1.3. Optim Methods Softw 11(1–4):545–581

    Article  MathSciNet  MATH  Google Scholar 

  • Wächter A, Biegler LT (2006) On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math Program 106(1):25–57

    Article  MathSciNet  MATH  Google Scholar 

  • Wang H, Murillo-Sanchez CE, Zimmerman RD, Thomas RJ (2007) On computational issues of market-based optimal power flow. IEEE Trans Power Syst 22(3):1185–1193

    Article  Google Scholar 

  • Zheng Y, Fantuzzi G, Papachristodoulou A, Goulart P, Wynn A (2016) CDCS: cone decomposition conic solver, version 1.1. https://github.com/giofantuzzi/CDCS

  • Zimmerman RD, Murillo-Sánchez CE, Thomas RJ (2011) MATPOWER: steady-state operations, planning, and analysis tools for power systems research and education. IEEE Trans Power Syst 26(1):12–19

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Eltved.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eltved, A., Dahl, J. & Andersen, M.S. On the robustness and scalability of semidefinite relaxation for optimal power flow problems. Optim Eng 21, 375–392 (2020). https://doi.org/10.1007/s11081-019-09427-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11081-019-09427-4

Keywords

Navigation