Skip to main content
Log in

An approach for robust PDE-constrained optimization with application to shape optimization of electrical engines and of dynamic elastic structures under uncertainty

  • Research Article
  • Published:
Optimization and Engineering Aims and scope Submit manuscript

Abstract

We present a robust optimization framework that is applicable to general nonlinear programs (NLP) with uncertain parameters. We focus on design problems with partial differential equations (PDE), which involve high computational cost. Our framework addresses the uncertainty with a deterministic worst-case approach. Since the resulting min–max problem is computationally intractable, we propose an approximate robust formulation that employs quadratic models of the involved functions that can be handled efficiently with standard NLP solvers. We outline numerical methods to build the quadratic models, compute their derivatives, and deal with high-dimensional uncertainties. We apply the presented approach to the parametrized shape optimization of systems that are governed by different kinds of PDE and present numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ben-Tal A, El Ghaoui L, Nemirovski A (2009) Robust optimization. Princeton series in applied mathematics. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Ben-Tal A, Nemirovski A (1998) Robust convex optimization. Math Oper Res 23(4):769–805

    Article  MathSciNet  MATH  Google Scholar 

  • Ben-Tal A, Nemirovski A (2000) Robust solution of linear programming problems contaminated with uncertain data. Math Program 88:411–421

    Article  MathSciNet  MATH  Google Scholar 

  • Ben-Tal A, Nemirovski A (2002) Robust optimization—methodology and application. Math Program 92(3):453–480

    Article  MathSciNet  MATH  Google Scholar 

  • Ben-Tal A, Nemirovski A (2008) Selected topics in robust convex optimization. Math Program 112(1):125–158

    Article  MathSciNet  MATH  Google Scholar 

  • Bertsimas D, Brown DB, Caramanis C (2011) Theory and application of robust optimization. SIAM Rev 53(3):464–501

    Article  MathSciNet  MATH  Google Scholar 

  • Bertsimas D, Nohadani O, Teo KM (2010) Robust optimization for unconstrained simulation-based problems. Oper Res 58(1):161–178

    Article  MathSciNet  MATH  Google Scholar 

  • Binnemans K, Jones PT, Blanpain B, Van Gerven T, Yang Y, Walton A, Buchert M (2013) Recycling of rare earths: a critical review. J Clean Prod 51:1–22

    Article  Google Scholar 

  • Birge J, Louveaux F (1997) Introduction to stochastic programming. Springer, Berlin

    MATH  Google Scholar 

  • Bontinck Z, Gersem HD, Schöps S (2016) Response surface models for the uncertainty quantification of eccentric permanent magnet synchronous machines. IEEE Trans Magn 52(3):1–4

    Article  Google Scholar 

  • Brauer JR (1975) Simple equations for the magnetization and reluctivity curves of steel. IEEE Trans Magn 11(1):81–81

    Article  Google Scholar 

  • Burke JV, Lewis AS, Overton ML (2005) A robust gradient sampling algorithm for nonsmooth, nonconvex optimization. SIAM J Optim 15(3):751–779. https://doi.org/10.1137/030601296

    Article  MathSciNet  MATH  Google Scholar 

  • Clarke FH (1975) Generalized gradients and applications. Trans Am Math Soc 205:247–262

    Article  MathSciNet  MATH  Google Scholar 

  • Clarke FH (1983) Optimization and nonsmooth analysis, classics in applied mathematics, vol. 5. Society for Industrial and Applied Mathematics (1990). Reprint of the work first published by John Wiley & Sons, Inc., New York

  • Clénet S (2013) Uncertainty quantification in computational electromagnetics: the stochastic approach. ICS Newsl Int Compumag Soc 20(1):3–13

    Google Scholar 

  • Conn AR, Gould NIM, Toint PL (2000) Trust-region methods, MPS/SIAM series on optimization, vol. 1. SIAM [u.a.]

  • Curtis FE, Mitchell T, Overton ML (2017) A BFGS-SQP method for nonsmooth, nonconvex, constrained optimization and its evaluation using relative minimization profiles. Optim Methods Softw 32(1):148–181. https://doi.org/10.1080/10556788.2016.1208749

    Article  MathSciNet  MATH  Google Scholar 

  • Curtis FE, Overton ML (2012) A sequential quadratic programming algorithm for nonconvex, nonsmooth constrained optimization. SIAM J Optim 22(2):474–500. https://doi.org/10.1137/090780201

    Article  MathSciNet  MATH  Google Scholar 

  • Deuflhard P (2011) Newton methods for nonlinear problems: affine invariance and adaptive algorithms. Springer, Berlin

    Book  MATH  Google Scholar 

  • Diehl M, Bock HG, Kostina E (2006) An approximation technique for robust nonlinear optimization. Math Program 107(1–2):213–230. https://doi.org/10.1007/s10107-005-0685-1

    Article  MathSciNet  MATH  Google Scholar 

  • Diehl M, Gerhard J, Marquardt W, Mönnigmann M (2008) Numerical solution approaches for robust nonlinear optimal control problems. Comput Chem Eng 32(6):1279–1292. https://doi.org/10.1016/j.compchemeng.2007.06.002

    Article  Google Scholar 

  • Duff GFD, Naylor D (1966) Differential equations of applied mathematics. Wiley, New York

    MATH  Google Scholar 

  • Duvaut G, Lions JL (1976) Inequalities in mechanics and physics. Die Grundlehren der mathematischen Wissenschaften, vol 219. Springer, Berlin

    Google Scholar 

  • Fletcher R, Leyffer S (2004) Solving mathematical programs with complementarity constraints as nonlinear programs. Optim Methods Softw 19(1):15–40. https://doi.org/10.1080/10556780410001654241

    Article  MathSciNet  MATH  Google Scholar 

  • Fortin C, Wolkowicz H (2004) The trust region subproblem and semidefinite programming. Optim Methods Softw 19(1):41–67. https://doi.org/10.1080/10556780410001647186

    Article  MathSciNet  MATH  Google Scholar 

  • Gould NI, Lucidi S, Roma M, Toint PL (1999) Solving the trust-region subproblem using the lanczos method. SIAM J Optim 9(2):504–525

    Article  MathSciNet  MATH  Google Scholar 

  • Griewank A (1992) Achieving logarithmic growth of temporal and spatial complexity in reverse automatic differentiation. Optim Methods Softw 1(1):35–54

    Article  Google Scholar 

  • Griewank A, Walther A (2000) Algorithm 799: revolve—an implementation of checkpointing for the reverse or adjoint mode of computational differentiation. ACM Trans Math Softw 26(1):19–45. https://doi.org/10.1145/347837.347846

    Article  MATH  Google Scholar 

  • Hager WW (2001) Minimizing a quadratic over a sphere. SIAM J Optim 12(1):188–208

    Article  MathSciNet  MATH  Google Scholar 

  • Haslinger J, Mäkinen RAE (2003) Introduction to shape optimization: theory, approxiamtion, and computation. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  • Hinze M, Pinnau R, Ulbrich M, Ulbrich S (2009) Optimization with PDE constraints, mathematical modelling: theory and application. Springer, Berlin

    MATH  Google Scholar 

  • Houska B, Diehl M (2013) Nonlinear robust optimization via sequential convex bilevel programming. Math Program 142(1):539–577

    Article  MathSciNet  MATH  Google Scholar 

  • Hughes TJR (2000) The finite element method: linear static and dynamic finite element analysis. Dover, Illinois

    MATH  Google Scholar 

  • Hülsmann T, Bartel A, Schöps S, De Gersem H (2014) Extended brauer model for ferromagnetic materials: analysis and computaion. COMPEL Int J Comput Math Electr Electron Eng 33(4):1251–1263

    Article  MATH  Google Scholar 

  • Huynh DBP (2007) Reduced basis approximation and application to fracture problems. Ph.D. thesis, Singapore-MIT Alliance, National University of Singapore

  • Kouri DP, Surowiec TM (2016) Risk-averse PDE-constrained optimization using the conditional value-at-risk. SIAM J Optim 26(1):365–396

    Article  MathSciNet  MATH  Google Scholar 

  • Lass O, Ulbrich S (2017) Model order reduction techniques with a posteriori error control for nonlinear robust optimization governed by partial differential equations. SIAM J Sci Comput (accepted)

  • Lehnhäuser T, Schäfer M (2005) A numerical approach for shape optimization of fluid flow domains. Comput Methods Appl Mech Eng 194:5221–5241

    Article  MATH  Google Scholar 

  • Leyffer S (2006) Complementarity constraints as nonlinear equations: theory and numerical experience. In: Optimization with multivalued mappings, Springer, pp 169–208

  • Ma DL, Braatz RD (2001) Worst-case analysis of finite-time control policies. IEEE Trans Control Syst Technol 9(5):766–774

    Article  Google Scholar 

  • Mäkelä MM, Karmitsa N, Wilppu O (2016) Proximal bundle method for nonsmooth and nonconvex multiobjective optimization. In: Neittaanmäki P, Repin S, Tuovinen T (eds) Mathematical modeling and optimization of complex structures. Springer, Berlin, pp 191–204

    Chapter  Google Scholar 

  • Moré JJ, Sorensen DC (1983) Computing a trust region step. SIAM J Sci Stat Comput 4(3):553–572

    Article  MathSciNet  MATH  Google Scholar 

  • Offermann P, Hameyer K (2013) A polynomial chaos meta-model for non-linear stochastic magnet variations. COMPEL Int J Comput Math Electr Electron Eng 32(4):1211–1218

    Article  MATH  Google Scholar 

  • Offermann P, Mac H, Nguyen TT, Clénet S, De Gersem H, Hameyer K (2015) Uncertainty quantification and sensitivity analysis in electrical machines with stochastically varying machine parameters. IEEE Trans Magn 51(3):1–4

    Article  Google Scholar 

  • Øksendal B (2005) Optimal control of stochastic partial differential equations. Stoch Anal Appl 23:165–179

    Article  MathSciNet  MATH  Google Scholar 

  • Pahner U (1998) A general design tool for terical optimization of electromagnetic energy transducers. Ph.D. thesis, KU Leuven

  • Polak E, Mayne DQ, Wardi Y (1983) On the extension of constrained optimization algorithms from differentiable to nondifferentiable problems. SIAM J Control Optim 21(2):179–203

    Article  MathSciNet  MATH  Google Scholar 

  • Powell MJD (2002) UOBYQA: unconstrained optimization by quadratic approximation. Math Program 92(3):555–582. https://doi.org/10.1007/s101070100290

    Article  MathSciNet  MATH  Google Scholar 

  • Powell MJD (2004) Least frobenius norm updating of quadratic models that satisfy interpolation conditions. Math Program. https://doi.org/10.1007/s10107-003-0490-7

    MathSciNet  MATH  Google Scholar 

  • Powell MJD (2004) On updating the inverse of a KKT matrix. In: Yuan Y (ed) Numerical linear algebra and optimization. Science Press, Beijing, pp 56–78

    Google Scholar 

  • Powell MJD (2006) The NEWUOA software for unconstrained optimization without derivatives. In: Di Pillo G, Roma M (eds) Large-Scale nonlinear optimization. Springer, Boston, pp 255–297

    Chapter  Google Scholar 

  • Powell MJD (2009) The BOBYQA algorithm for bound constrained optimization without derivatives. Cambridge NA Report NA2009/06. University of Cambridge, Cambridge

  • Powell MJD (2015) On fast trust region methods for quadratic models with linear constraints. Math Program Comput 7(3):237–267

    Article  MathSciNet  MATH  Google Scholar 

  • Rahman MA, Zhou P (1991) Determination of saturated parameters of pm motors using loading magnetic fields. IEEE Trans Magn 27(5):3947–3950

    Article  Google Scholar 

  • Rendl F, Wolkowicz H (1997) A semidefinite framework for trust region subproblems with applications to large scale minimization. Math Program 77(1):273–299

    Article  MathSciNet  MATH  Google Scholar 

  • Rojas M, Santos SA, Sorensen DC (2001) A new matrix-free algorithm for the large-scale trust-region subproblem. SIAM J Optim 11(3):611–646

    Article  MathSciNet  MATH  Google Scholar 

  • Rojas M, Santos SA, Sorensen DC (2008) Algorithm 873: LSTRS: MATLAB software for large-scale trust-region subproblems and regularization. ACM Trans Math Softw 34(2):1–28. https://doi.org/10.1145/1326548.1326553

    Article  MathSciNet  MATH  Google Scholar 

  • Rozza G, Huynh DBP, Patera AT (2008) Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations: application to transport and continuum mechanics. Arch Comput Methods Eng 15(3):229–275. https://doi.org/10.1007/s11831-008-9019-9

    Article  MathSciNet  MATH  Google Scholar 

  • Samareh JA (1999) A survey of shape parametrization techniques. Tech. Rep. NASA/CP-1999-2009136, NASA

  • Santos SA, Sorensen DC (1995) A new matrix-free algorithm for the large-scale trust-region subproblem

  • Schramm H, Zowe J (1992) A version of the bundle idea for minimizing a nonsmooth function: conceptual idea, convergence analysis, numerical results. SIAM J Optim 2(1):121–152

    Article  MathSciNet  MATH  Google Scholar 

  • Sederberg TW, Parry SR (1986) Free-form deformation of solid geometric models. Comput Graph 20(4):151–160

    Article  Google Scholar 

  • Shapiro A, Dentcheva D, Ruszczyński A (2009) Lectures on stochastic programming: modeling and theory. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  • Sichau A (2013) Robust nonlinear programming with discretized PDE constraints using second-order approximations. Ph.D. thesis, Technische Universität Darmstadt

  • Sichau A, Ulbrich S (2011) A second order approximation technique for robust shape optimization. Appl Mech Mater 104:13–22. https://doi.org/10.4028/www.scientific.net/AMM.104.13

    Article  Google Scholar 

  • Sorensen DC (1982) Newton’s method with a model trust region modification. SIAM J Numer Anal 19(2):409–426

    Article  MathSciNet  MATH  Google Scholar 

  • Steihaug T (1983) The conjugate gradient method and trust regions in large scale optimization. SIAM J Numer Anal 20(3):626–637

    Article  MathSciNet  MATH  Google Scholar 

  • Stewart GW (1973) Introduction to matrix computations. Computer science and applied mathematics. Academic Press, Cambridge

    Google Scholar 

  • Tiesler H, Kirby RM, Xiu D, Preusser T (2012) Stochastic collocation for optimal control problems with stochastic pde constraints. SIAM J Control Optim 50(5):2659–2682

    Article  MathSciNet  MATH  Google Scholar 

  • Toint P (1981) Towards an efficient sparsity exploiting newton method for minimization. In: Duff IS (ed) Sparse matrices and their uses. Academic Press, Cambridge, pp 57–88

    Google Scholar 

  • Zhang Y (2007) General robust-optimization formulation for nonlinear programming. J Optim Theory Appl 132(1):111–124. https://doi.org/10.1007/s10957-006-9082-z

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by Deutsche Forschungsgemeinschaft within SFB 805 and by Bundesministerium für Bildung und Forschung within SIMUROM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Ulbrich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolvenbach, P., Lass, O. & Ulbrich, S. An approach for robust PDE-constrained optimization with application to shape optimization of electrical engines and of dynamic elastic structures under uncertainty. Optim Eng 19, 697–731 (2018). https://doi.org/10.1007/s11081-018-9388-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11081-018-9388-3

Keywords

Mathematics Subject Classification

Navigation