Berry MW, Browne M, Langville AN, Pauca VP, Plemmons RJ (2007) Algorithms and applications for approximate nonnegative matrix factorization. Comput Stat Data Anal 52(1):155–173
MathSciNet
Article
Google Scholar
Blanton MR, Roweis S (2007) K-corrections and filter transformations in the ultraviolet, optical, and near-infrared. Astron J 133:734–754. https://doi.org/10.1086/510127. ArXiv:astro-ph/0606170
Article
Google Scholar
Boyd S, Parikh N, Chu E, Peleato B, Eckstein J (2011) Distributed optimization and statistical learning via the alternating direction method of multipliers. Found Trends® Mach Learn 3(1):1–122
MATH
Google Scholar
Chambolle A (2004) An algorithm for total variation minimization and applications. J Math Imaging Vis 20(1):89–97. https://doi.org/10.1023/B:JMIV.0000011325.36760.1e
MathSciNet
Article
MATH
Google Scholar
Chambolle A, Lions PL (1997) Image recovery via total variation minimization and related problems. Numer Math 76(2):167–188. https://doi.org/10.1007/s002110050258
MathSciNet
Article
MATH
Google Scholar
Chen G, Teboulle M (1994) A proximal-based decomposition method for convex minimization problems. Math Program 64(1–3):81–101
MathSciNet
Article
Google Scholar
Combettes PL, Pesquet JC (2007) A Douglas-Rachford splitting approach to nonsmooth convex variational signal recovery. IEEE J Sel Top Signal Process 1(4):564–574. https://doi.org/10.1109/JSTSP.2007.910264
Article
Google Scholar
Combettes PL, Pesquet JC (2011) Proximal splitting methods in signal processing. In: Fixed-point algorithms for inverse problems in science and engineering, Springer, pp 185–212
Combettes PL, Wajs VR (2005) Signal recovery by proximal forward-backward splitting. Multiscale Model Simul 4(4):1168–1200
MathSciNet
Article
Google Scholar
Condat L (2013) A primal-dual splitting method for convex optimization involving lipschitzian, proximable and linear composite terms. J Optim Theory Appl 158(2):460–479
MathSciNet
Article
Google Scholar
Douglas J, Rachford HH (1956) On the numerical solution of heat conduction problems in two and three space variables. Trans Am Math Soc 82(2):421–439
MathSciNet
Article
Google Scholar
Eckstein J, Bertsekas DP (1992) On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math Program 55(1):293–318
MathSciNet
Article
Google Scholar
Eckstein J, Yao W (2017) Approximate ADMM algorithms derived from Lagrangian splitting. Comput Optim Appl. https://doi.org/10.1007/s10589-017-9911-z
MathSciNet
Article
Google Scholar
Esser E, Zhang X, Chan TF (2010) A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science. SIAM J Imaging Sci 3(4):1015–1046
MathSciNet
Article
Google Scholar
Gabay D, Mercier B (1976) A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Comput Math Appl 2(1):17–40
Article
Google Scholar
Gillis N (2014) The why and how of nonnegative matrix factorization, Chapman and Hall/CRC, pp 257–291. https://doi.org/10.1201/b17558-13
Glowinski R, Marroco A (1975) Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité d’une classe de problèmes de dirichlet non linéaires. Revue française d’automatique, informatique, recherche opérationnelle Analyse numérique 9(2):41–76
Article
Google Scholar
Grippo L, Sciandrone M (2000) On the convergence of the block nonlinear Gauss-Seidel method under convex constraints. Oper Res Lett 26(3):127–136
MathSciNet
Article
Google Scholar
Hong M, Luo ZQ, Razaviyayn M (2016) Convergence analysis of alternating direction method of multipliers for a family of nonconvex problems. SIAM J Optim 26(1):337–364
MathSciNet
Article
Google Scholar
Jia S, Qian Y (2009) Constrained nonnegative matrix factorization for hyperspectral unmixing. IEEE Trans Geosci Remote Sens 47(1):161–173. https://doi.org/10.1109/TGRS.2008.2002882
Article
Google Scholar
Komodakis N, Pesquet JC (2015) Playing with duality: an overview of recent primal-dual approaches for solving large-scale optimization problems. IEEE Signal Process Mag 32(6):31–54
Article
Google Scholar
Lee DD, Seung HS (2001) Algorithms for non-negative matrix factorization. In: Leen TK, Dietterich TG, Tresp V (eds) Advances in Neural Information Processing Systems 13, MIT Press, pp 556–562, http://papers.nips.cc/paper/1861-algorithms-for-non-negative-matrix-factorization.pdf
Lin CJ (2007) Projected gradient methods for nonnegative matrix factorization. Neural Comput 19(10):2756–2779
MathSciNet
Article
Google Scholar
Mitchell PA (1995) Hyperspectral digital imagery collection experiment (hydice). In: Proceedings of SPIE, vol 2587, pp 2587–2587–26, https://doi.org/10.1117/12.226807
Nesterov Y (2013) Gradient methods for minimizing composite functions. Math Program 140(1):125–161
MathSciNet
Article
Google Scholar
Paatero P, Tapper U (1994) Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5(2):111–126
Article
Google Scholar
Parikh N, Boyd S et al (2014) Proximal algorithms. Found Trends® Optim 1(3):127–239
Article
Google Scholar
Pesquet JC, Pustelnik N (2012) A parallel inertial proximal optimization method. Pac J Optim 8(2):273–305, https://hal.archives-ouvertes.fr/hal-00790702
Razaviyayn M, Hong M, Luo ZQ (2013) A unified convergence analysis of block successive minimization methods for nonsmooth optimization. SIAM J Optim 23(2):1126–1153
MathSciNet
Article
Google Scholar
Stephanopoulos G, Westerberg AW (1975) The use of Hestenes’ method of multipliers to resolve dual gaps in engineering system optimization. J Optim Theory Appl 15(3):285–309
MathSciNet
Article
Google Scholar
Wang Y, Yin W, Zeng J (2015) Global convergence of ADMM in nonconvex nonsmooth optimization. arXiv preprint arXiv:151106324
Xu Y, Yin W (2013) A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completion. SIAM J Imaging Sci 6(3):1758–1789
MathSciNet
Article
Google Scholar
Zhang S, Qian H, Gong X (2016) An alternating proximal splitting method with global convergence for nonconvex structured sparsity optimization. In: AAAI, pp 2330–2336
Zhu G (2016) Nonnegative Matrix Factorization (NMF) with Heteroscedastic Uncertainties and Missing Data. ArXiv e-prints ArXiv:1612.06037