Skip to main content
Log in

An uncertainty management framework for industrial applications

  • Published:
Optimization and Engineering Aims and scope Submit manuscript

Abstract

Uncertainty affects industrial systems in many ways. It may describe the amount of system variability. It may influence the way we make decisions. This paper provides a novel framework that maps the effects of uncertainty to existing mathematical methods. In addition, new techniques to assess, adjust and abate parametric uncertainty are presented. Due to the computational burden associated with solving uncertain models of large-scale industrial processes, some simplification techniques may be required, including scenarios with the different parameter realizations. Issues regarding scenario generation, comparison, assessment, management and practical implementation are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

A :

Left-hand side coefficients

B :

Left-hand side coefficients

c :

Objective function coefficients

E(.) :

Expected value operator

f :

Flexibility index

g(.):

Inequality constraints

h(.):

Equality constraints

L(.):

Lagrangian function

MaxR(.) :

Maximum regret function

n g :

Number of inequality constraints

n h :

Number of equality constraints

p :

Probability

R(.) :

Regret function

S :

Set of all scenarios

x :

Decision variable

y :

Slack variable

λ :

Lagrange multipliers for inequality constraints

μ :

Lagrange multipliers for equality constraints

θ:

Parameters

1 :

First-stage decisions

2 :

Second-stage decisions

d :

Deterministic

eq :

Equality constraint

in :

Inequality constraint

LB:

Lower bound

N:

Nominal value

s :

Scenario

u :

Uncertain

UB:

Upper bound

References

  • Averbakh I (2000) Minimax regret solutions for minimax optimization problems with uncertainty. Oper Res Lett 27:57–65

    Article  MathSciNet  MATH  Google Scholar 

  • Ben-Tal A, Nemirovski A (1998) Convex optimization in engineering: modeling, analysis, algorithms. Research Report, Technion, Israel

    MATH  Google Scholar 

  • Ben-Tal A, Nemirovski A (2000) Robust solutions of linear programming problems contaminated with uncertain data. Math Progr 88:411–424

    Article  MathSciNet  MATH  Google Scholar 

  • Ben-Tal A, Nemirovski A (2001) On polyhedral approximations of the second-order cone. Math Oper Res 26(2):193–205

    Article  MathSciNet  MATH  Google Scholar 

  • Box GEP, Jenkins GM, Reinsel GC (1994) Time series analysis forecasting and control, 3rd edn. Prentice-Hall Inc, Englewood Cliffs

    MATH  Google Scholar 

  • Charnes A, Cooper WW (1963) Deterministic equivalents for optimizing and satisficing under chance constraints. Oper Res 11(1):18–39

    Article  MathSciNet  MATH  Google Scholar 

  • Chinneck JW, Ramadan K (2000) Linear programming with interval coefficients. J Oper Res Soc 51:209–220

    Article  MATH  Google Scholar 

  • Dembo R (1991) Scenario optimization. Ann Oper Res 30:63–80

    Article  MathSciNet  MATH  Google Scholar 

  • Draper NR, Smith H (1998) Applied regression analysis, 3rd edn. Wiley, Hoboken

    MATH  Google Scholar 

  • Glover F, Laguna M (1997) Tabu search. Kluwer Academic Publishers, Norwell

    Book  MATH  Google Scholar 

  • Grossmann IE, Floudas CA (1987) Active constraint strategy for flexibility analysis in chemical processes. Comp Chem Eng 11:675–693

    Article  Google Scholar 

  • Halemane KP, Grossmann IE (1983) Optimal process design under uncertainty. AIChE J 29:425–433

    Article  MathSciNet  Google Scholar 

  • Ierapetritou MG, Pistikopoulos EN, Floudas CA (1996) Operational planning under uncertainty. Comp Chem Eng 20(12):1499–1516

    Article  Google Scholar 

  • Kelly J D, Zyngier D (2008a) Continuously improve the performance of planning and scheduling models with parameter feedback. Presented at the Foundations of Computer-Aided Process Operations (FOCAPO) 2008, Massachusetts, USA, pp 459–462

  • Kelly JD, Mann JL (2003) Crude oil blend scheduling optimization: an application with multimillion dollar benefits. Hydrocarb Process 47–53:72–79

    Google Scholar 

  • Kelly JD, Zyngier D (2008) Hierarchical decomposition heuristic for scheduling: coordinated reasoning for decentralized and distributed decision-making problems. Comp Chem Eng 32:2684–2705

    Article  Google Scholar 

  • Kelly JD, Zyngier D (2012) Apparatus and method for order generation and management to facilitate solutions of decision-making problems. US Patent 8255348

  • Koltai T, Terlaky T (2000) The difference between the managerial and mathematical interpretation of sensitivity analysis results in linear programming. Int J Prod Econ 65:257–274

    Article  Google Scholar 

  • Li Z, Ierapetritou M (2008) Process scheduling under uncertainty: review and challenges. Comp Chem Eng 32:715–727

    Article  Google Scholar 

  • Li Z, Ding R, Floudas CA (2011) A comparative theoretical and computational study on robust counterpart optimization: I. Robust linear optimization and robust mixed integer linear optimization. Ind Chem Eng Res 50(18):10567–10603

    Article  Google Scholar 

  • Lin X, Janak SL, Floudas CA (2004) A new robust optimization approach for scheduling under uncertainty. Comp Chem Eng 28:1069–1085

    Article  Google Scholar 

  • Rockafellar RT, Wets RJ-B (1991) Scenarios and policy aggregation in optimization under uncertainty. Math Oper Res 16:119–147

    Article  MathSciNet  MATH  Google Scholar 

  • Sahinidis NV (2004) Optimization under uncertainty: state-of-the-art and opportunities. Comp Chem Eng 28:971–983

    Article  Google Scholar 

  • Sen S, Higle JL (1999) An introductory tutorial on stochastic linear programming models. Interfaces 29(2):33–61

    Article  Google Scholar 

  • Swaney RE, Grossmann IE (1985a) An index for operational flexibility in chemical process design. Part I: formulation and theory. AIChE J 31:621–630

    Article  Google Scholar 

  • Swaney RE, Grossmann IE (1985b) An index for operational flexibility in chemical process design. Part II: computational algorithms. AIChE J 31:631–641

    Article  Google Scholar 

  • Varvarezos DK, Grossmann IE, Biegler LT (1995) A sensitivity based approach for flexibility analysis and design of linear process systems. Comp Chem Eng 19:1301–1316

    Article  Google Scholar 

  • Williams HP (2013) Model building in mathematical programming, 5th edn. Wiley, England

    MATH  Google Scholar 

  • Zyngier D (2006), Ph.D. thesis, McMaster University, Hamilton, ON, Canada

  • Zyngier D, Marlin T E (2006) Monitoring and improving LP optimization with uncertain parameters. In: Proceedings of the 16th European Symposium on Computer Aided Process Engineering (ESCAPE-16), Garmisch-Partenkirchen, Germany, pp 427–432

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danielle Zyngier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zyngier, D. An uncertainty management framework for industrial applications. Optim Eng 18, 179–202 (2017). https://doi.org/10.1007/s11081-016-9309-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11081-016-9309-2

Keywords

Navigation