Skip to main content

Advertisement

Log in

Three-dimensional turbulent optimization of vaned diffusers for centrifugal compressors based on metamodel-assisted genetic algorithms

  • Published:
Optimization and Engineering Aims and scope Submit manuscript

Abstract

In this work, the performance of an automotive turbocharger centrifugal compressor, to be used in a microturbine for combined heat and power applications, have been improved through a design optimization procedure for vaned diffusers. This methodology couples a genetic algorithm with a three-dimensional turbulent computational fluid dynamics code. The computational costs have been reduced by using a Kriging metamodel to assist the genetic algorithm. The simulations have been performed by considering both the impeller and vaned diffuser, in order to account for the turbulent, three-dimensional, and non-uniform flow conditions at the diffuser inlet. A multi-objective optimization problem has been solved by minimizing two objective functions, which depend on the compressor stage total-to-static pressure ratio and total-to-total isentropic efficiency. The design variables are the position and inclination of the diffuser vanes leading and trailing edges, the vane number, and the diffuser outlet radius. Three optimized geometries extrapolated from the Pareto front exhibit higher static pressure recovery than the vaneless diffuser, but only one has better efficiency. Nevertheless, the performance of the current compressor can be improved by substituting the vaneless diffuser with a vaned one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • ANSYS BladeGen 13.0 user’s guide (2010a) ANSYS, Inc, Canonsburg, USA

  • ANSYS CFX 13.0 user’s guide (2010b) ANSYS, Inc, Canonsburg, USA

  • ANSYS TurboGrid 13.0 user’s guide (2010c) ANSYS, Inc, Canonsburg, USA

  • Aungier RH (2000) Centrifugal compressors: a strategy for aerodynamic design and analysis. ASME, New York

    Google Scholar 

  • Benini E, Toffolo A (2003) Centrifugal compressor of a 100 kW microturbine: part 3—optimization of diffuser apparatus. In: Proc ASME turbo expo 2003, GT-2003-38154

    Google Scholar 

  • Benini E, Tourlidakis A (2001) Design optimization of vaned diffusers for centrifugal compressors using genetic algorithms. In: Proc 15th AIAA computational fluid dynamics conf, AIAA 2001-2583

    Google Scholar 

  • Cumpsty NA (1989) Compressor aerodynamics. Longman Scientific & Technical, Essex

    Google Scholar 

  • Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. Evol Comput 6(2):182–197

    Article  Google Scholar 

  • Denton JD (1994) Designing in three dimensions. In: Turbomachinery design using CFD, AGARD, Neuilly sur Seine, France, AGARD-LS-195

    Google Scholar 

  • Engeda A (1997) Design of a range of low solidity vaned diffusers for centrifugal compressors. In: Proc 1997 ASME IMECE, 97-WA/PID-4

    Google Scholar 

  • Eynon PA, Whitfield A (1997) The effect of low-solidity vaned diffusers on the performance of a turbocharger compressor. Proc Inst Mech Eng, Part C, J Mech Eng Sci 211(5):325–339

    Article  Google Scholar 

  • GAMBIT 2.4.6 user’s guide (2007) FLUENT, Inc, Lebanon, USA

  • Giannakoglou KC (2002) Design of optimal aerodynamic shapes using stochastic optimization methods and computational intelligence. Prog Aerosp Sci 38(1):43–76

    Article  Google Scholar 

  • Inoue M, Cumpsty NA (1984) Experimental study of centrifugal impeller discharge flow in vaneless and vaned diffusers. J Eng Gas Turbines Power 106(2):455–467

    Article  Google Scholar 

  • Japikse D, Baines NC (1994) Introduction to turbomachinery. Concepts ETI Inc/Oxford University Press, Norwich/Oxford

    Google Scholar 

  • Kim HW, Park JI, Ryu SH, Choi SW, Ghal SH (2009) The performance evaluation with diffuser geometry variations of the centrifugal compressor in a marine engine (70 MW) turbocharger. J Eng Gas Turbines Power 131:012. 201–1–012, 201–7

    Google Scholar 

  • Kim S, Park J, Ahn K, Baek J (2010) Numerical investigation and validation of the optimization of a centrifugal compressor using a response surface method. Proc Inst Mech Eng A, J Power Energy 224(2):251–259

    Article  Google Scholar 

  • Krige DG (1951) A statistical approach to some basic mine valuation problems on the Witwatersrand. J S Afr Inst Min Metall 52(6):119–139

    Google Scholar 

  • Menter FR (1993) Zonal two-equation kω turbulence models for aerodynamic flows. In: Proc 23rd fluid dynamics, plasmadynamics and lasers conf, AIAA 1993-2906

    Google Scholar 

  • Menter FR (1994) Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J 32(8):1598–1605

    Article  Google Scholar 

  • Micheli D, Pantarotto S, Pediroda V (2003) Optimum-shape design of a small gas turbine centrifugal compressor diffuser. In: Proc 5th European conf on turbomachinery, fluid dynamics and thermodynamics

    Google Scholar 

  • Nexus graphical user interface manual (2010d) iChrome Ltd, Bristol, UK

  • Pierret S, Van Den Braembussche RA (1999) Turbomachinery blade design using a Navier-Stokes solver and artificial neural network. J Turbomach 121(2):326–332

    Article  Google Scholar 

  • Rao SS (2009) Engineering optimization—theory and practice, 4th edn. Wiley, Hoboken

    Google Scholar 

  • Rodgers C (1982) Perfomance of centrifugal compressor channel diffusers. In: Proc ASME turbo expo 1982, 82-GT-10

    Google Scholar 

  • Soares C (2007) Microturbines—applications for distributed enegy systems. Butterworth-Heinemann, Amsterdam

    Google Scholar 

  • Spraker WA, Young MY, Silvey JP (1994) A one-dimensional design method for a turbocharger compressor vaned diffuser. In: Turbocharging and turbochargers. IMechE, London, C484/016/94

    Google Scholar 

  • Tang B (1993) Orthogonal array-based Latin hypercubes. J Am Stat Assoc 88(424):1392–1397

    Article  MATH  Google Scholar 

  • Tsuei HH, Oliphant K, Japikse D (1999) The validation of rapid CFD modeling for turbomachinery. In: CFD technical developments and future trends. IMechE, London

    Google Scholar 

  • Van Den Braembussche RA (2010) Tuning of optimization strategies. In: Strategies for optimization and automated design of gas turbine engines, Neuilly sur Seine, France, RTO-EN-AVT-167-15, RTO of NATO

    Google Scholar 

  • Verstraete T, Alsalihi Z, Van Den Braembussche RA (2007) Multidisciplinary optimization of a radial compressor for micro gas turbine applications. In: Proc ASME turbo expo 2007, GT2007-27484

    Google Scholar 

  • Wang Z, Zi G, Wang X (2006) Aerodynamic design optimization of vaned diffusers for centrifugal compressors using Kriging model. In: Proc Asian joint conf on propulsion and power 2006, AJCPP2006-22023

    Google Scholar 

  • Xi G, Wang Z, Zhang C, Yuan M (2008) Aerodynamic optimization design of vaned diffusers for the 100 kW micro gas turbine’s centrifugal compressor. In: Proc ASME turbo expo 2008, GT2008-50440

    Google Scholar 

  • Ye KQ (1998) Orthogonal column Latin hypercubes and their application in computer experiments. J Am Stat Assoc 93(444):1430–1439

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mattia Olivero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olivero, M., Pasquale, D., Ghidoni, A. et al. Three-dimensional turbulent optimization of vaned diffusers for centrifugal compressors based on metamodel-assisted genetic algorithms. Optim Eng 15, 973–992 (2014). https://doi.org/10.1007/s11081-013-9242-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11081-013-9242-6

Keywords

Navigation