Skip to main content
Log in

Second-order cone programming with warm start for elastoplastic analysis with von Mises yield criterion

  • Published:
Optimization and Engineering Aims and scope Submit manuscript

Abstract

The incremental problem for quasistatic elastoplastic analysis with the von Mises yield criterion is discussed within the framework of the second-order cone programming (SOCP). We show that the associated flow rule under the von Mises yield criterion with the linear isotropic/kinematic hardening is equivalently rewritten as a second-order cone complementarity problem. The minimization problems of the potential energy and the complementary energy for incremental analysis are then formulated as the primal-dual pair of SOCP problems, which can be solved with a primal-dual interior-point method. To enhance numerical performance of tracing an equilibrium path, we propose a warm-start strategy for a primal-dual interior-point method based on the primal-dual penalty method. In this warm-start strategy, we solve a penalized SOCP problem to find the equilibrium solution at the current loading step. An advanced initial point for solving this penalized SOCP problem is defined by using information of the solution at the previous loading step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alizadeh F, Goldfarb D (2003) Second-order cone programming. Math Program 95:3–51

    Article  MathSciNet  MATH  Google Scholar 

  • Andersen ED, Roos C, Terlaky T (2003) On implementing a primal-dual interior-point method for conic quadratic optimization. Math Program B 95:249–277

    Article  MathSciNet  MATH  Google Scholar 

  • Benson HY, Shanno DF (2007) An exact primal-dual penalty method approach to warm-starting interior-point methods for linear programming. Comput Optim Appl 38:371–399

    Article  MathSciNet  MATH  Google Scholar 

  • Benson HY, Shanno DF (2008) Interior-point methods for nonconvex nonlinear programming: Regularization and warmstarts. Comput Optim Appl 40:143–189

    Article  MathSciNet  MATH  Google Scholar 

  • Ben-Tal A, Nemirovski A (2001) Lectures on modern convex optimization: analysis, algorithms, and engineering applications. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  • Bićanić N, Pearce CJ (1996) Computational aspects of a softening plasticity model for plain concrete. Mech Cohes-Frict Mater, 1:75–94

    Article  Google Scholar 

  • Bisbos CD, Pardalos PM (2007) Second-order cone and semidefinite representations of material failure criteria. J Optim Theory Appl 134:275–301

    Article  MathSciNet  MATH  Google Scholar 

  • Blaheta R (1997) Convergence of Newton-type methods in incremental return mapping analysis of elasto-plastic problems. Comput Methods Appl Mech Eng 147:167–185

    Article  MathSciNet  MATH  Google Scholar 

  • Caddemi S, Martin JB (1991) Convergence of the Newton-Raphson algorithm in elastoplastic incremental analysis. Int J Numer Methods Eng 31:177–191

    Article  MathSciNet  MATH  Google Scholar 

  • Capurso M, Maier G (1970) Incremental elastoplastic analysis and quadratic optimization. Meccanica 5:107–116

    Article  MATH  Google Scholar 

  • Contrafatto L, Ventura G (2004) Numerical analysis of augmented Lagrangian algorithm in complementary elastoplasticity. Int J Numer Methods Eng 60:2263–2287

    Article  MATH  Google Scholar 

  • Cuomo M, Contrafatto L (2000) Stress rate formulation for elastoplastic models with internal variables based on augmented Lagrangian regularization. Int J Solids Struct 37:3935–3964

    Article  MATH  Google Scholar 

  • Ekeland I, Temam R (1976) Convex analysis and variational problems. North-Holland, Amsterdam. SIAM, Philadelphia (1999)

    MATH  Google Scholar 

  • Forsgren A (2006) On warm starts for interior methods. In: Ceragioli F, Dontchev A, Furuta H, Marti K, Pandolfi L (eds) System modeling and optimization. Springer, Boston, pp 51–66

    Chapter  Google Scholar 

  • Gondzio J (1998) Warm start of the primal-dual method applied in the cutting-plane scheme. Math Program 83:125–143

    MathSciNet  MATH  Google Scholar 

  • Han W, Reddy BD (1999) Plasticity. Springer, New York

    MATH  Google Scholar 

  • Hayashi S, Yamashita N, Fukushima M (2005) A combined smoothing and regularization method for monotone second-order cone complementarity problems. SIAM J Optim 15:593–615

    Article  MathSciNet  MATH  Google Scholar 

  • Hjiaj M, Fortin J, de Saxcé G (2003) A complete stress update algorithm for the non-associated Drucker–Prager model including treatment of the apex. Int J Eng Sci 41:1109–1143

    Article  Google Scholar 

  • Hu ZQ, Soh A-K, Chen WJ, Li XW, Lin G (2007) Non-smooth nonlinear equations methods for solving 3D elastoplastic frictional contact problems. Comput Mech 39:849–858

    Article  MATH  Google Scholar 

  • Huang J, Griffiths DV (2008) Observations on return mapping algorithms for piecewise linear yield criteria. Int J Geomech, 8:253–265

    Article  Google Scholar 

  • John E, Yıldırım EA (2008) Implementation of warm-start strategies in interior-point methods for linear programming in fixed dimension. Comput Optim Appl 41:151–183

    Article  MathSciNet  MATH  Google Scholar 

  • Kanno Y (2011) Nonsmooth mechanics and convex optimization. CRC Press, Boca Raton

    Book  MATH  Google Scholar 

  • Kanno Y, Martins JAC, Pinto da Costa A (2006) Three-dimensional quasi-static frictional contact by using second-order cone linear complementarity problem. Int J Numer Methods Eng 65:62–83

    Article  MathSciNet  MATH  Google Scholar 

  • Kanno Y, Ohsaki M (2011) A non-interior implicit smoothing approach to complementarity problems for frictionless contacts. Comput Methods Appl Mech Eng 200:1176–1185

    Article  MathSciNet  MATH  Google Scholar 

  • Krabbenhøft K, Lyamin AV, Sloan SW (2007) Formulation and solution of some plasticity problems as conic programs. Int J Solids Struct 44:1533–1549

    Article  Google Scholar 

  • Krabbenhøft K, Lyamin AV, Sloan SW (2008) Three-dimensional Mohr–Coulomb limit analysis using semidefinite programming. Commun Numer Methods Eng 24:1107–1119

    Article  Google Scholar 

  • Krabbenhøft K, Lyamin AV, Sloan SW, Wriggers P (2007) An interior point algorithm for elastoplasticity. Int J Numer Methods Eng 69:592–626

    Article  MATH  Google Scholar 

  • Liew KM, Wu YC, Zou GP, Ng TY (2002) Elasto-plasticity revisited: numerical analysis via reproducing kernel particle method and parametric quadratic programming. Int J Numer Methods Eng 55:669–683

    Article  MATH  Google Scholar 

  • Maier G (1968) A quadratic programming approach for certain classes of non-linear structural problems. Meccanica 3:121–130

    Article  MathSciNet  MATH  Google Scholar 

  • Maier G (1969) Complementary plastic work theorems in piecewise-linear elastoplasticity. Int J Solids Struct 5:261–270

    Article  MathSciNet  MATH  Google Scholar 

  • Mitchell JE (2001) Restarting after branching in the SDP approach to MAX-CUT and similar combinatorial optimization problem. J Comb Optim 5:151–166

    Article  MathSciNet  MATH  Google Scholar 

  • Mittelmann HD (2003) An independent benchmarking of SDP and SOCP solvers. Math Program B 95:407–430

    Article  MathSciNet  MATH  Google Scholar 

  • Monteiro RDC, Tsuchiya T (2000) Polynomial convergence of primal-dual algorithms for the second-order cone program based on the MZ-family of directions. Math Program 88:61–83

    Article  MathSciNet  MATH  Google Scholar 

  • Oñate E (2009) Structural analysis with the finite element method. Linear statics. Basis and solids, vol 1. Springer, Berlin

    Book  MATH  Google Scholar 

  • Oritz M, Popov EP (1985) Accuracy and stability of integration algorithm for elastoplastic constitutive relations. Int J Numer Methods Eng 21:1561–1576

    Article  Google Scholar 

  • Pérez-Foguet A, Rodríguez-Ferran A, Huerta A (2001) Consistent tangent matrices for substepping schemes. Comput Methods Appl Mech Eng 190:4627–4647

    Article  MATH  Google Scholar 

  • Rockafellar RT (1970) Convex analysis. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Simo JC, Hughes TJR (1998) Computational inelasticity. Springer, New York

    MATH  Google Scholar 

  • Simo JC, Kennedy JG, Taylor RL (1989) Complementary mixed finite element formulations for elastoplasticity. Comput Methods Appl Mech Eng 74:177–206

    Article  MathSciNet  MATH  Google Scholar 

  • Simo JC, Taylor RL (1985) Consistent tangent operators for rate-independent elastoplasticity. Comput Methods Appl Mech Eng 49:221–245

    Article  MATH  Google Scholar 

  • Simo JC, Taylor RL (1986) A return mapping algorithm for plane stress elastoplasticity. Int J Numer Methods Eng 22:649–670

    Article  MathSciNet  MATH  Google Scholar 

  • Sturm JF (1999) Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim Methods Softw 11/12:625–653

    Article  MathSciNet  Google Scholar 

  • Theocaris PS, Marketos E (1964) Elastic-plastic analysis of perforated thin strips of a strain-hardening material. J Mech Phys Solids 12:377–390

    Article  Google Scholar 

  • Tin-Loi F, Pang JS (1993) Elastoplastic analysis of structures with nonlinear hardening: a nonlinear complementarity approach. Comput Methods Appl Mech Eng 107:299–312

    Article  MATH  Google Scholar 

  • Tin-Loi F, Xia SH (2001) Nonholonomic elastoplastic analysis involving unilateral frictionless contact as a mixed complementarity problem. Comput Methods Appl Mech Eng 190:4551–4568

    Article  MATH  Google Scholar 

  • Tu X, Andrate JE, Chen Q (2009) Return mapping for nonsmooth and multiscale elastoplasticity. Comput Methods Appl Mech Eng 198:2286–2296

    Article  MATH  Google Scholar 

  • Tütüncü RH, Toh KC, Todd MJ (2003) Solving semidefinite-quadratic-linear programs using SDPT3. Math Program B95:189–217

    Article  Google Scholar 

  • Xia Y (2007) A Newton’s method for perturbed second-order cone programs. Comput Optim Appl 37:371–408

    Article  MathSciNet  MATH  Google Scholar 

  • Yamashita M, Fujisawa K, Kojima M (2003) Implementation and evaluation of SDPA6.0 (SemiDefinite Programming Algorithm 6.0). Optim Methods Softw 18:491–505

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang HW, He SY, Li XS, Wriggers P (2004) A new algorithm for numerical solution of 3D elastoplastic contact problems with orthotropic friction law. Comput Mech 34:1–14

    MATH  Google Scholar 

  • Zhang HW, Zhong WX, Wu CH, Liao AH (2006) Some advances and applications in quadratic programming method for numerical modeling of elastoplastic contact problems. Int J Mech Sci 48:176–189

    Article  MATH  Google Scholar 

  • Zhong W, Sun S (1988) A finite element method for elasto-plastic structures and contact problems by parametric quadratic programming. Int J Numer Methods Eng 26:2723–2738

    Article  MATH  Google Scholar 

  • Zhu C (1995) A finite element-mathematical programming method for elastoplastic contact problems with friction. Finite Elem Anal Des 20:273–282

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiro Kanno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yonekura, K., Kanno, Y. Second-order cone programming with warm start for elastoplastic analysis with von Mises yield criterion. Optim Eng 13, 181–218 (2012). https://doi.org/10.1007/s11081-011-9144-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11081-011-9144-4

Keywords

Navigation