Optimal design of capacitated production networks


In this work we present a mixed-integer model for the optimal design of production/transportation systems. In contrast to standard design problems, our model is originally based on a coupled system of differential equations capturing the dynamics of manufacturing processes and stocks. The problem is to select an optimal parameter configuration from a predefined set such that respective constraints are fulfilled. We focus on single commodity flows over large time scales as well as highly interconnected networks and propose a suitable start heuristic to ensure feasibility and to speed up the solution procedure.

This is a preview of subscription content, access via your institution.


  1. Armbruster D, de Beer C, Freitag M, Jagalski T, Ringhofer C (2006) Autonomous control of production networks using a pheromone approach. Physica A 363(1)

  2. Armbruster D, Degond P, Ringhofer C (2006) A model for the dynamics of large queuing networks and supply chains. SIAM J Appl Math 66:896–920

    MathSciNet  MATH  Article  Google Scholar 

  3. Battiston S, Delli Gatti D, Gallegati M, Greenwald B, Stiglitz JE (2007) Credit chains and bankruptcy propagation in production networks. J Econ Dyn Control 31(6):2061–2084

    MATH  Article  Google Scholar 

  4. Bretti G, D’Apice C, Manzo R, Piccoli B (2007) A continuum-discrete model for supply chains dynamics. Netw Heterog Media 2:661–694

    MathSciNet  MATH  Article  Google Scholar 

  5. D’Apice C, Manzo R (2006) A fluid dynamic model for supply chains. Netw Heterog Media 1:379–398

    MathSciNet  MATH  Article  Google Scholar 

  6. Daganzo CF (2003) A theory of supply chains. Springer, New York

    Google Scholar 

  7. Fügenschuh A, Göttlich S, Herty M, Klar A, Martin A (2008) A discrete optimization approach to large scale supply networks based on partial differential equations. SIAM J Sci Comput 30(3):1490–1507

    MathSciNet  MATH  Article  Google Scholar 

  8. Göttlich S, Herty M, Klar A (2005) Network models for supply chains. Commun Math Sci 3(4):545–559

    MathSciNet  MATH  Google Scholar 

  9. Göttlich S, Herty M, Klar A (2006) Modelling and optimization of supply chains on complex networks. Commun Math Sci 4(2):315–330

    MathSciNet  MATH  Google Scholar 

  10. Herrmann JW, Ioannou G, Minis I, Proth JM (1996) A dual ascent approach to thje fixed-charge capacitated network design problem. Eur J Oper Res 95:476–490

    MATH  Article  Google Scholar 

  11. Hinojosa Y, Kalcsis J, Nickel, Puerto J, Velten S (2008) Dynamic supply chain design with inventory. Comput Oper Res 35:373–391

    MathSciNet  MATH  Article  Google Scholar 

  12. IBM ILOG Cplex, IBM Deutschland GmbH 71137 Ehningen. Information available at URL http://www.ibm.com/software/products/de/de/ilogcple/

  13. Kirchner C, Herty M, Göttlich S, Klar A (2006) Optimal control for continuous supply network models. Netw Heterog Media 1(4):675–688

    MathSciNet  MATH  Article  Google Scholar 

  14. Melo MT, Nickel S, da Gama FS (2006) Dynamic multi-commodity capacitated facility location: a mathematical modeling framework for strategic supply chain planning. Comput Oper Res 33:181–208

    MATH  Article  Google Scholar 

  15. Ziegler U, Göttlich S (2010) Design network problem and heuristics. In: Proceedings of European consortium for mathematics in industry (ECMI), pp 515–520

Download references

Author information



Corresponding author

Correspondence to Simone Göttlich.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dittel, A., Göttlich, S. & Ziegler, U. Optimal design of capacitated production networks. Optim Eng 12, 583–602 (2011). https://doi.org/10.1007/s11081-010-9123-1

Download citation


  • Production systems
  • Mixed integer models
  • Heuristics