Mixed-variable optimal design of induction motors including efficiency, noise and thermal criteria

Abstract

Squirrel cage induction motors design requires making numerous trade-offs, especially between its audible electromagnetic noise level, its efficiency and its material cost. However, adding the vibro-acoustic and thermal models to the usual electrical model of the motor drastically increases the simulation time. A finite element approach is then inconceivable, especially if the model has to be coupled to an evolutionary optimization algorithm.

A fast simulation tool of the variable-speed induction machine, based on electrical, mechanical, acoustic and thermal analytical models, has therefore been elaborated. It has been validated at different stages with both tests and finite element method (FEM) simulations. This model is then coupled to a mixed-variable constrained Non-dominating Sorting Genetic Algorithm (NSGA-II) with a stochastic repair algorithm. Some global optimizations with respect to several objectives (noise level, efficiency and material cost), including thermal constraints, are finally presented, and several convenient visualizations of multi-dimensional solutions are presented.

This is a preview of subscription content, log in to check access.

References

  1. Ait-Hammouda A, Hecquet M, Goueygou M, Brochet P (2006) Prediction of the electromagnetic noise of an asynchronous machine using experimental designs. Math Comput Simul 71(4):499–509

    MathSciNet  MATH  Article  Google Scholar 

  2. Alger P (1970) Induction machines: their behaviour and uses. Gordon and Breach, New York

    Google Scholar 

  3. Amor AH, Timar P, Poloujadoff M (1995) Induction squirrel cage machine design with minimization of electromagnetic noise. IEEE Trans Energy Convers 10(4):681–687

    Article  Google Scholar 

  4. Deb K (2002) Multi-objective optimization using evolutionary algorithms. Wiley, New York

    Google Scholar 

  5. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197

    Article  Google Scholar 

  6. Fasquelle A, Ansel A, Brisset S, Hecquet M, Brochet P, Randria A (2006a) Iron losses distribution in a railway traction induction motor. In: Proc of the international conference on electrical machines (ICEM’06). Chania, Greece

  7. Fasquelle A, Saury D, Harmand S, Randria A (2006b) Numerical study of convective heat transfer in end region of enclosed induction motor of railway traction. IJEET Int J Electr Eng Trans

  8. Huang H, Fuchs E, Zak Z (1988) Optimization of single-phase induction motor design. IEEE Trans Energy Convers 3(2):357–366

    Article  Google Scholar 

  9. Hubert A (2000) Contribution “l’étude des bruits acoustiques générés lors de l’association machines électriques—convertisseurs statiques de puissances—application à la machine asynchrone. PhD thesis, Université des Technologies de Compiègne, France

  10. Jordan H (1950) Electric motor silencer—formation and elimination of the noises in the electric motors. W. Giradet-Essen editor

  11. Le Besnerais J (2008) Reduction of magnetic noise in pwm-supplied induction machines—low-noise design rules and multi-objective optimisation. PhD thesis, Ecole Centrale de Lille, France

  12. Le Besnerais J, Fasquelle A, Hecquet M, Lanfranchi V, Brochet P, Randria A (2006) A fast noise-predictive multiphysical model of the PWM-controlled induction machine. In: Proc of the international conference on electrical machines (ICEM’06). Chania, Greece

  13. Le Besnerais J, Lanfranchi V, Hecquet M, Brochet P (2007a) Multi-objective optimization of the induction machine with minimization of audible electromagnetic noise. Eur Phys J—Appl Phys 39(2)

  14. Le Besnerais J, Lanfranchi V, Hecquet M, Brochet P (2007b) Calcul du bruit acoustique d’une machine asynchrone a pas fractionnaire. In: Proceeding of EF’07

  15. Le Besnerais J, Lanfranchi V, Hecquet M, Brochet P (2008a) Bruit audible d’origine magnétique des machines asynchrones. Techniques de l’Ingénieur D6(D 3580)

  16. Le Besnerais J, Lanfranchi V, Hecquet M, Brochet P (2008b) Multi-objective optimization of induction machines including mixed variables and noise minimization. IEEE Trans Mag 44(6)

  17. Le Besnerais J, Lanfranchi V, Hecquet M, Brochet P (2008c) Characterization of the audible magnetic noise emitted by traction motors in railway rolling stock. In: Proc of the INTERNOISE conference. Shanghai, China

  18. Le Besnerais J, Lanfranchi V, Hecquet M, Brochet P, Friedrich G (2008d) Acoustic noise of electromagnetic origin in a fractional-slot induction machine. COMPEL 27(5):1033–1052

    MATH  Google Scholar 

  19. Liuzzi G, Lucidi S, Parasiliti F, Villani M (2003) Multiobjective optimization techniques for the design of induction motors. IEEE Trans Magn 39(3):1261–1264

    Article  Google Scholar 

  20. Liwschitz M (1967) Calcul des machines électriques. Spes Lausanne

  21. Mohan M, Deb K, Mishra S (2003) A fast multi-objective evolutionary algorithm for finding well-spread Pareto-optimal solutions. Tech rep, Kanpur Genetic Algorithms Laboratory (KanGAL)

  22. Poloujadoff M, Christaki E, Bergniann C (1994) Univariant search: An opportunity to identify and solve conflict problems in optimization. IEEE Trans Energy Convers 9(4):659–664

    Article  Google Scholar 

  23. Singh C, Sarkar D (1992) Practical considerations in the optimisation of induction motor design. IEE Proc 139(4):365–373

    Google Scholar 

  24. Timar P (1989) Noise and vibration of electrical machines. Elsever, Amsterdam

    Google Scholar 

  25. Yang SJ (1981) Low noise electrical motors. Clarendon Press, Oxford

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jean Le Besnerais.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Le Besnerais, J., Fasquelle, A., Lanfranchi, V. et al. Mixed-variable optimal design of induction motors including efficiency, noise and thermal criteria. Optim Eng 12, 55–72 (2011). https://doi.org/10.1007/s11081-010-9115-1

Download citation

Keywords

  • Multi-objective optimization
  • Multi-physics modelling
  • Induction machine
  • Magnetic noise
  • Thermal nodal network