Skip to main content
Log in

Optimization models for operative planning in drinking water networks

  • Published:
Optimization and Engineering Aims and scope Submit manuscript

Abstract

The topic of this paper is minimum cost operative planning of pressurized water supply networks over a finite horizon and under reliable demand forecast. Since this is a very hard problem, it is desirable to employ sophisticated mathematical algorithms, which in turn calls for carefully designed models with suitable properties. The paper develops a nonlinear mixed integer model and a nonlinear programming model with favorable properties for gradient-based optimization methods, based on smooth component models for the network elements. In combination with further nonlinear programming techniques (Burgschweiger et al. in ZIB Report ZR-05-31, Zuse Institute Berlin, 2005), practically satisfactory near-optimum solutions even for large networks can be generated in acceptable time using standard optimization software on a PC workstation. Such an optimization system is in operation at Berliner Wasserbetriebe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Birkhoff G (1963) A variational principle for nonlinear networks. Q Appl Math 21:160–162

    MathSciNet  Google Scholar 

  • Boulos PF, Wu Z, Orr C-H, Moore M, Hsiung P, Thomas D (2000) Optimal pump operation of water distribution systems using genetic algorithm, H2ONET—users guide. MW Software INC

  • Burgschweiger J (2001) Grundlagenermittlung zum Modul Optimierung innerhalb des LSW-Managementsystems. Internal Report, Berliner Wasserbetriebe

  • Burgschweiger J (2002) Optimierung der verteilten Wasserförderung in großen Rohrnetzen. Internal Report, Berliner Wasserbetriebe, June 2002

  • Burgschweiger J (2004) Dokumentation zum Modul Prognose innerhalb des LSW-Managementsystems. Internal Report, Berliner Wasserbetriebe

  • Burgschweiger J, Gnädig B, Steinbach MC (2005) Nonlinear programming techniques for operative planning in large drinking water networks. ZIB Report ZR-05-31, Zuse-Institute Berlin

  • Can EK, Houck MH (1984) Real-time reservoir operations by goal programming. J Water Resour Plan Manage 297–309

  • Carpentier P, Cohen G (1993) Applied mathematics in water supply networks management. Automatica 1215–1250

  • Cembrano G, Wells G, Quevedo J, Perez R, Argelaguet R (2000) Optimal control of a water distribution network in a supervisory control system. Control Eng Pract 1177–1188

  • Cembrowicz RG (1990) Steuerungsoptimierung eines Wasserversorgungssystems. GWF-Wasser/Abwasser 131:550–562

    Google Scholar 

  • Cohen D, Shamir U, Sinai G (2000) Optimal operation of multi-quality water supply systems—II: The Q-H model. Eng Optim 687–719

  • Coulbeck B, Brdys M, Orr CH, Rance JP (1988a) A hierarchical approach to optimized control of water distribution systems. I: Decomposition. Optim Control Appl Methods 9:51–61

    Article  MATH  MathSciNet  Google Scholar 

  • Coulbeck B, Brdys M, Orr CH, Rance JP (1988b) A hierarchical approach to optimized control of water distribution systems. II: Lower-level algorithm. Optim Control Appl Methods 9:109–126

    MATH  MathSciNet  Google Scholar 

  • Damrath H, Cord-Landwehr K (1998) Wasserversorgung. Teubner, Stuttgart

    Google Scholar 

  • Deuerlein J (2002) Zur hydraulischen Systemanalyse von Wasserversorgungsnetzen. PhD thesis, Universität Karlsruhe

  • Deuerlein J, Cembrowicz RG, Dempe S (2003) Simulation der Hydraulik von Wasserversorgungsnetzen mit Kontrollarmaturen. GWF-Wasser/Abwasser 144:505–515

    Google Scholar 

  • Diba A, Louie PWF, Yeh WW-G (1995) Planned operation of large-scale water distribution system. J Water Resour Plan Manage 260–269

  • Ehrhardt K, Steinbach MC (2005) Nonlinear optimization in gas networks. In: Bock HG, Kostina E, Phu HX, Rannacher R (eds) Modeling, simulation and optimization of complex processes. Springer, Berlin, pp 139–148

    Chapter  Google Scholar 

  • Gnädig B, Steinbach MC (2003) Betriebsoptimierung der Berliner Trinkwasserversorgung. Zuse Institute Berlin. Study for ABB Utilities GmbH, Mannheim

  • Gnädig B, Steinbach MC (2004) Betriebsoptimierung der Berliner Trinkwasserversorgung mit Gesamtnetzmodell. Zuse Institute Berlin. Study for ABB Utilities GmbH, Mannheim

  • Gugat M, Leugering G, Schittkowski K, Schmidt EJPG (2001) Modelling, stabilization, and control of flow in networks of open channels. In: Grötschel M, Krumke SO, Rambau J (eds) Online optimization of large scale systems. Springer, Berlin, pp 251–270

    Google Scholar 

  • Guhl F (1999) Gestion optimale des réseaux d’eau potable. PhD thesis, L’Université Louis Pasteur

  • Hartl RF, Sethi SP, Vickson RG (1995) A survey of the maximum principles for optimal control problems with state constraints. SIAM Rev 37:181–218

    Article  MATH  MathSciNet  Google Scholar 

  • Kittner H, Starke W, Wissel D (1985) Wasserversorgung, 5th edn. VEB, Berlin

    Google Scholar 

  • Leugering G, Schmidt EJPG (2002) On the modelling and stabilization of flows in networks of open canals. SIAM J Control Optim 41:164–180

    Article  MATH  MathSciNet  Google Scholar 

  • Murray DM, Yakowitz SJ (1979) Constrained differential dynamic programming and its application to multireservoir control. Water Resour Res 15:223–235

    Article  Google Scholar 

  • Mutschmann J, Stimmelmayr F (1996) Taschenbuch der Wasserversorgung. Franckh-Kosmos, Stuttgart

    Google Scholar 

  • Orr CH, Parker MA, Tennant ST (1990) Implementation of on-line control scheme for city water system. J Water Resour Plan Manage 708–726

  • Papageorgiou M (1984) Optimal control of generalized flow networks. In: System modelling and optimization. Proc. 11th IFIP Conf, Copenhagen 1983. Lecture Notes Control Inf Sci, vol 59. Springer, Berlin, pp 373–382

    Chapter  Google Scholar 

  • Pontryagin LS, Boltyansky VG, Gamkrelidze RV, Mischenko EF (1962) Mathematical theory of optimal processes. Wiley, New York

    MATH  Google Scholar 

  • Rossman LA (1994) EPANET users guide. US Environmental Protection Agency, Cincinnati

  • Sager S (2005) Numerical methods for mixed-integer optimal control problems. Der Andere Verlag, Tönning, Lübeck, Marburg. PhD dissertation

    Google Scholar 

  • Sakarya ABA, Mays LW (2000) Optimal operation of water distribution pumps considering water quality. J Water Resour Plan Manage 210–220

  • Schäfer H (1999) Wasserbedarfsprognose mit Neuronalen Netzen. Technical Report, Technische Universität Berlin, Berliner Wasserbetriebe, Aug/Sept 1999

  • Steinbach MC (2005) Topological index criteria for DAE in water networks. ZIB Report ZR-05-49, Zuse Institute Berlin, 2005

  • Steinbach MC (2007) On PDE solution in transient optimization of gas networks. J Comput Appl Math 203:345–361

    Article  MATH  MathSciNet  Google Scholar 

  • Sun Y-H, Yeh WW-G, Hsu N-S, Louie PWF (1995) Generalized network algorithm for water-supply-system optimization. J Water Resour Plan Manage 392–398

  • Zessler U, Shamir U (1989) Optimal operation of water distribution systems. J Water Resour Plan Manage 737–751

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc C. Steinbach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burgschweiger, J., Gnädig, B. & Steinbach, M.C. Optimization models for operative planning in drinking water networks. Optim Eng 10, 43–73 (2009). https://doi.org/10.1007/s11081-008-9040-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11081-008-9040-8

Keywords

Navigation