Skip to main content
Log in

Practical shape optimization of a levitation device for single droplets

  • Published:
Optimization and Engineering Aims and scope Submit manuscript

Abstract

The rigorous optimization of the geometry of a glass cell with computational fluid dynamics (CFD) is performed. The cell will be used for non-invasive nuclear magnetic resonance (NMR) measurements on a single droplet levitated in a counter current of liquid in a conical tube. The objective function of the optimization describes the stability of the droplet position required for long-period NMR measurements.

The direct problem and even more the optimization problem require an efficient method to handle the high numerical complexity implied. Here, the flow equations are solved two-dimensionally and in steady state with the finite-element code SEPRAN for a spherical droplet with ideally mobile interface. The optimization is performed by embedding the CFD solver SEPRAN in the optimization environment EFCOSS. The underlying derivatives are computed using the automatic differentiation software ADIFOR. An overall concept for the optimization process is developed, requiring a robust scheme for the discretization of the geometries as well as a model for horizontal stability in the axially symmetric case. The numerical results show that the previously employed measuring cell described by Schröter is less suitable to maintain a stable droplet position than the new cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson WK, Newman JC, Whitfield DL, Nielsen EJ (2001) Sensitivity analysis for the Navier–Stokes equations on unstructured meshes using complex variables. AIAA J 39(1):56–63

    Article  Google Scholar 

  • Berz M, Bischof CH, Corliss G, Griewank A (1996) Computational differentiation: techniques, applications and tools. SIAM, Philadelphia

    MATH  Google Scholar 

  • Bischof CH, Carle A, Khademi P, Mauer A (1996) ADIFOR 2.0: automatic differentiation of FORTRAN 77 programs. IEEE Comput Sci Eng 3(3):18–32

    Article  Google Scholar 

  • Bischof CH, Bücker HM, Lang B, Rasch A (2003a) An interactive environment for supporting the transition from simulation to optimization. Sci Program 11(4):263–272

    Google Scholar 

  • Bischof CH, Bücker HM, Lang B, Rasch A (2003b) Solving large-scale optimization problems with EFCOSS. Adv Eng Softw 34(10):633–639

    Article  Google Scholar 

  • Bischof CH, Bücker HM, Rasch A, Slusanschi E (2003c) Evaluation of a computer model for wavy falling films using EFCOSS. In: Kumar V, Gavrilova ML, Tan CJK, L’Ecuyer P (eds) Computational science and its applications—ICCSA 2003, proceedings of the international conference on computational science and its applications, part II, Montreal, Canada, 18–21 May 2003. Lecture notes in computer science, vol 2668. Springer, Berlin, pp 78–84

    Google Scholar 

  • Bischof CH, Bücker HM, Rasch A, Slusanschi E (2003d) Sensitivities for a single drop simulation. In: Sloot PMA, Abramson D, Bogdanov AV, Dongarra JJ, Zomaya AY, Gorbachev YE (eds) Computational science—ICCS 2003, proceedings of the international conference on computational science, part II, Melbourne, Australia and St. Petersburg, Russia, 2–4 June 2003. Lecture notes in computer science, vol 2658. Springer, Berlin, pp 888–896

    Google Scholar 

  • Bischof CH, Bücker HM, Lang B, Rasch A, Risch JW (2003e) Extending the functionality of the general-purpose finite element package SEPRAN by automatic differentiation. Int J Numer Methods Eng 58(14):2225–2238

    Article  MATH  Google Scholar 

  • Bischof CH, Bücker HM, Lang B, Rasch A, Slusanschi E (2005) Efficient and accurate derivatives for a software process chain in airfoil shape optimization. Future Gener Comput Syst 21(8):1333–1344

    Article  Google Scholar 

  • Bosch EGT, Lasance CJM (2000) High accuracy thermal interface resistance measurement using a transient method. Electron Cool Mag 6(3):26–32

    Google Scholar 

  • Brauer H (1979) Turbulenz in mehrphasigen Strömungen. Chem Ing Tech 51(10):934–948

    Article  Google Scholar 

  • Bücker HM, Corliss GF, Hovland PD, Naumann U, Norris B (2005) Automatic differentiation: applications, theory, and implementations. Springer, New York

    Google Scholar 

  • Carle A, Fagan M, Green LL (1998) Preliminary results from the application of automated adjoint code generation to CFL3D. In: Proceedings of the 7th AIAA/USAF/NASA/ISSMO symposium on multidisciplinary analysis and optimization, St. Louis, MO, USA, 2–4 September 1998, AIAA Paper 98-4807

  • Clift R, Grace JR, Weber ME (1978) Bubbles, drops, and particles. Academic Press, New York

    Google Scholar 

  • Corliss G, Faure C, Griewank A, Hascöet L, Naumann U (eds) (2002) Automatic differentiation of algorithms: from simulation to optimization. Springer, New York

    MATH  Google Scholar 

  • Gay DM (1990) Usage summary for selected optimization routines. Computing Science Technical Report 153, AT&T Bell Laboratories, Murray Hill

  • Griewank A (1989) On automatic differentiation. In: Iri IM, Tanabe K (eds) Mathematical programming: recent developments and applications. Kluwer Academic, Dordrecht, pp 83–108

    Google Scholar 

  • Griewank A (2000) Evaluating derivatives: principles and techniques of algorithmic differentiation. SIAM, Philadelphia

    MATH  Google Scholar 

  • Griewank A, Corliss G (1991) Automatic differentiation of algorithms. SIAM, Philadelphia

    MATH  Google Scholar 

  • Han SI (2001) Correlation of position and motion by NMR: pipe flow, falling drop, and salt water ice. Dissertation, RWTH Aachen University

  • Han SI, Stapf S, Blümich B (2001) NMR imaging of falling water drops. Phys Rev Lett 87(14):144501

    Article  Google Scholar 

  • Hascoët L, Vazquez M, Dervieux A (2003) Automatic differentiation for optimum design, Applied to sonic boom reduction. In: Kumar V, Gavrilova ML, Tan CJK, L’Ecuyer P (eds) Computational science and its applications—ICCSA 2003, proceedings of the international conference on computational science and its applications, part II, Montreal, Canada, 18–21 May 2003. Lecture notes in computer science, vol 2668. Springer, Berlin, pp 85–94

    Google Scholar 

  • Henschke M (2004) Auslegung pulsierter Siebboden-Extraktionskolonnen. Shaker Aachen, Habilitationsschrift, RWTH Aachen, ISBN 3-8322-3511-6.

  • Henschke M, Pfennig A (1996) Simulation of packed extraction columns with the REDROP model. In: Proceedings of the 12th international congress of chemical and process engineering, CHISA, Praha

  • Henschke M, Waheed A, Pfennig A (2000) Wandeinfluss auf die Sedimentationsgeschwindigkeit von Kugeln. Chem Ing Tech 72(11):1376–1380

    Article  Google Scholar 

  • Idelchik IE (1994) Handbook of hydraulic resistance. CRC Press, Boca Raton, pp 239–331

    Google Scholar 

  • Kumar A, Hartland S (1994) Prediction of drop size, dispersed-phase holdup, slip velocity, and limiting throughputs in packed extraction columns. Trans IChemE, Part A 72:89–104

    Google Scholar 

  • Lyness JN, Moler CB (1967) Numerical differentiation of analytical functions. SIAM J Numer Anal 4:202–210

    Article  MATH  MathSciNet  Google Scholar 

  • Martins JRRA, Sturdza P, Alonso JJ (2003) The complex-step derivative approximation. ACM Trans Math Softw 29:245–262

    Article  MATH  MathSciNet  Google Scholar 

  • Schröter J, Bäcker W, Hampe MJ (1998) Stoffaustauschmessungen an Einzeltropfen und an Tropfenschwärmen in einer Gegenstrommeßzelle. Chem Ing Tech 70(3):279–283

    Article  Google Scholar 

  • Rall LB (1981) Automatic differentiation: techniques and applications. Lecture notes in computer science, vol 120. Springer, Berlin

    MATH  Google Scholar 

  • Segal G (1993) SEPRAN users manual. Ingenieursbureau Sepra, Leidschendam

    Google Scholar 

  • Segal G, Vuik C, Vermolen FA (1998) Conserving discretization for the free boundary in a two-dimensional Stefan problem. J Comput Phys 141(1):1–21

    Article  MATH  MathSciNet  Google Scholar 

  • Slattery JC (1990) Interfacial transport phenomena. Springer, Berlin

    Google Scholar 

  • Tabata M, Itakura K (1998) A precise computation of drag coefficients of a sphere. Int J Comput Fluid Dyn 9(3–4):303–311

    Article  MATH  Google Scholar 

  • Tomiyama A, Tamai H, Zun I, Hosokawa S (2002) Transverse migration of single bubbles in simple shear flows. Chem Eng Sci 57:1849–1858

    Article  Google Scholar 

  • van Kan JJIM, Segal A (1995) Numerik partieller Differentialgleichungen für Ingenieure. Teubner, Stuttgart, p 117

    MATH  Google Scholar 

  • van Keken PE, Yuen DA, Petzold LR (1995) DASPK: a new high order and adaptive time-integration technique with applications to mantle convection with strongly temperature- and pressure-dependent rheology. Geophys Astrophys Fluid Dyn 80:57–74

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Martin Bücker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Groß-Hardt, E., Slusanschi, E., Bücker, H.M. et al. Practical shape optimization of a levitation device for single droplets. Optim Eng 9, 179–199 (2008). https://doi.org/10.1007/s11081-007-9027-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11081-007-9027-x

Keywords

Navigation