Skip to main content
Log in

Application of a sensitivity equation method to the kε model of turbulence

  • Published:
Optimization and Engineering Aims and scope Submit manuscript

Abstract

In this paper, we present some examples of sensitivity analysis for flows modeled by the standard kε model of turbulence with wall functions. The flow and continuous sensitivity equations are solved using an adaptive finite element method. Our examples emphasize a number of applications of sensitivity analysis: identification of the most significant parameters, analysis of the flow model, assessing the influence of closure coefficients, calculation of nearby flows, and uncertainty analysis. The sensitivity parameters considered are closure coefficients of the turbulence model and constants appearing in the wall functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

SEM:

Sensitivity Equation Method

RANS:

Reynolds-Averaged Navier–Stokes Equations

a :

Design parameter

C 1,C 2,C μ ,σ k ,σ ε :

kε model constants

C f :

Skin friction coefficient

d :

Imposed distance to the wall

E :

Roughness parameter

k :

Turbulent kinetic energy

\(\mathcal{K}\) :

Natural logarithm of k

L :

Reference length

p :

Pressure

P :

Production of turbulence

Re:

Reynolds number

s x :

Sensitivity of the variable x

u :

Velocity

u,v :

Velocity components

u k :

Velocity scale based on k

u ** :

Friction velocity τ w =ρ u ** u k

x,y :

Cartesian coordinates

y :

Distance to the wall

ε :

Turbulent dissipation rate

ℰ:

Natural logarithm of ε

κ :

Kármán constant

μ :

Viscosity

μ t :

Eddy viscosity

ρ :

Density

τ w :

Wall shear stress

t :

Tangent to the wall

:

Sensitivity (derivative)

+:

Dimensionless (wall functions)

T :

Transpose

References

  • Blackwell BF, Dowding KJ, Cochran RJ, Dobranich D (1998) Utilization of sensitivity coefficients to guide the design of a thermal battery. ASME IMECE 361:73–82

    Google Scholar 

  • Borggaard J, Pelletier D (1998) Optimal shape design in forced convection using adaptive finite elements. In: 36th AIAA aerospace sciences meeting and exhibit, Reno, NV, January 1998. AIAA Paper 98-0908

  • Borggaard J, Pelletier D, Turgeon É (2000) A study of optimal cooling strategies in thermal processes. In: 38th AIAA aerospace sciences meeting and exhibit, Reno, NV, January 2000. AIAA Paper 2000-0563

  • Burden RL, Faires JD, Reynolds AC (1981) Numerical analysis, 2th edn. Prindle, Weber and Schmidt, Boston, p. 10

    Google Scholar 

  • Chabard JP (1991) Projet N3S de mécanique des fluides—manuel théorique de la version 3. Tech. Rep. EDF HE-41/91.30B, Électricité de France

  • Craig KJ, Venter PJ (1999) Optimization of the kε coefficients for separation on a high-lift airfoil. In: 37th AIAA aerospace sciences meeting and exhibit, Reno, NV, January 1999. AIAA Paper 99-0151

  • Galera S, Hallo L, Puigt G, Mohammadi B (2005) Wall laws for heat transfer predictions in thermal turbulent flows. In: 38th AIAA thermophysics conference, Toronto, ON, Canada, June 2005. AIAA 2005-5200

  • Gerald CF, Wheatley PO (1998) Applied numerical analysis, 4th edn. Addison–Wesley, New York, p. 46

    Google Scholar 

  • Godfrey AG, Cliff EM (2001) Sensitivity equations for turbulent flows. In: 39th AIAA aerospace sciences meeting and exhibit, Reno, NV, January 2001. AIAA Paper 2001-1060

  • Godfrey AG, Eppard WM, Cliff EM (1998) Using sensitivity quations for chemically reacting flows. In: 7th AIAA/USAF/NASA/ISSMO symposium on multidisciplinary analysis and optimization, St. Louis, Missouri, September 1998, pp. 789–798. AIAA Paper 98-4805

  • Gunzburger MD (1999) Sensitivities, adjoints, and flow optimization. Int J Numer Methods Fluids 31:53–78

    Article  MATH  MathSciNet  Google Scholar 

  • Ignat L, Pelletier D, Ilinca F (1998) Adaptive computation of turbulent forced convection. Numer Heat Transf Part A 34:847–871

    Article  Google Scholar 

  • Ilinca F (1996) Méthodes d’éléments finis adaptatives pour les écoulements turbulents. PhD thesis, École Polytechnique de Montréal

    Google Scholar 

  • Ilinca F, Pelletier D (1997) A Unified approach for adaptive solutions of compressible and incompressible flows. In: 35th AIAA aerospace sciences meeting and exhibit, Reno, NV, January 1997. AIAA Paper 97-0330

  • Ilinca F, Pelletier D (1998) Positivity preservation and adaptive solution for the kε model of turbulence. AIAA J 36(1):44–51

    MATH  Google Scholar 

  • Ilinca F, Pelletier D, Garon A (1997a) An adaptive finite element method for a two-equation turbulence model in wall-bounded flows. Int J Numer Methods Fluids 24:101–120

    Article  MATH  Google Scholar 

  • Ilinca F, Pelletier D, Arnoux-Guisse F (1997b) An adaptive finite element scheme for turbulent free shear flows. Int J CFD 8:171–188

    MATH  MathSciNet  Google Scholar 

  • Ilinca F, Pelletier D, Ignat L (1998) Adaptive finite element solution of compressible turbulent flows. AIAA J 36(12):2187–2194

    Google Scholar 

  • Kim JJ (1978) Investigation of separation and reattachment of turbulent shear layer: flow over a backward facing step. PhD thesis, Stanford University

    Google Scholar 

  • Lacasse D, Turgeon É, Pelletier D (2001) On the judicious use of the kε model, wall functions and adaptivity. Int J Therm Sci 43:925–938

    Article  Google Scholar 

  • Lacasse D, Turgeon É, Pelletier D (2002) Predictions of turbulent separated flow in a turnaround duct using wall functions and adaptivity. Int J CFD 15:209–225

    Google Scholar 

  • Launder BE, Spalding J (1974) The numerical computation of turbulent flows. Comput Methods Appl Mech Eng 3(2):269–289

    Article  MATH  Google Scholar 

  • Limache A, Cliff E (1999) Aerodynamic sensitivity theory for rotary stability derivatives. In: Proceedings of the AIAA atmospheric flight mechanics conference. AIAA Paper Number 99-4313

  • Pelletier D, Ilinca F (1997) Adaptive remeshing for the kε model of turbulence. AIAA J 35(4):640–646

    Article  MATH  Google Scholar 

  • Pelletier D, Turgeon E, Etienne S, Borggaard J (2002) Reliable sensitivity analysis by an adaptive sensitivity equation method. In: 3rd AIAA theoretical fluid mechanics conference, St. Louis, MO, June 2002. AIAA Paper 2002–2758

  • Peraire J, Vahdati M, Morgan K, Ziekiewicz O (1987) Adaptive remeshing for compressible flow computations. J Comput Phys 72(2):449–466

    Article  MATH  Google Scholar 

  • Ralston A, Abramowitz P (1981) A first course in numerical analysis, 2nd edn. MCGraw–Hill, New York, p. 5

    Google Scholar 

  • Roache P (1998) Verification and validation in computational science and engineering. Hermosa, Albuquerque

    Google Scholar 

  • Schlichting H (1979) Boundary-layer theory, 7th edn. McGraw–Hill, New York

    MATH  Google Scholar 

  • Schultz-Grunow F (1941) New frictional resistance law for smooth plates. NACA TM 986

  • Turgeon É (1997) Application d’une méthode d’éléments finis adaptative à des écoulements axisymétriques. Master’s thesis, École Polytechnique de Montréal

  • Turgeon, É, Pelletier D, Borggaard J (2000a) A general continuous sensitivity equation formulation for complex flows. In: 8th AIAA/NASA/USAF/ISSMO symposium on multidisciplinary analysis and optimization, Long Beach, CA, September 2000. AIAA Paper 2000-4732

  • Turgeon É, Pelletier D, Borggaard J (2000b) A continuous sensitivity equation method for flows with temperature dependent properties. In: 8th AIAA/NASA/USAF/ISSMO symposium on multidisciplinary analysis and optimization, Long Beach, CA, September 2000. AIAA Paper 2000-4821

  • Turgeon É, Pelletier D, Borggaard J (2000c) A continuous sensitivity equation approach to optimal design in mixed convection. Numer Heat Transf Part A 38:869–885

    Article  Google Scholar 

  • Turgeon É, Pelletier D, Borggaard J (2001a) A General continuous sensitivity equation formulation for the kε model of turbulence. In: 15th AIAA computational fluid dynamics conference, Anaheim, CA, June 2001. AIAA Paper 2001-3000

  • Turgeon É, Pelletier D, Borggaard J (2001b) Sensitivity and uncertainty analysis for variable property flows. In: 39th AIAA aerospace sciences meeting and exhibit, Reno, NV, January 2001. AIAA Paper 2001-0139

  • Turgeon E, Pelletier D, Borggaard J (2004) A general continuous sensitivity equation formulation for the kε model of turbulence. Int J CFD 1:29–46

    MathSciNet  Google Scholar 

  • White FM (1974) Viscous flow. McGraw–Hill, New York

    MATH  Google Scholar 

  • Zienkiewicz OC, Zhu JZ (1992a) The superconvergent patch recovery and a posteriori error estimates, part 1: the recovery technique. Int J Numer Methods Eng 33:1331–1364

    Article  MATH  MathSciNet  Google Scholar 

  • Zienkiewicz OC, Zhu JZ (1992b) The superconvergent patch recovery and a posteriori error estimates, part 2: error estimates and adaptivity. Int J Numer Methods Eng 33:1365–1382

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Pelletier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turgeon, É., Pelletier, D., Borggaard, J. et al. Application of a sensitivity equation method to the kε model of turbulence. Optim Eng 8, 341–372 (2007). https://doi.org/10.1007/s11081-007-9003-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11081-007-9003-5

Keywords

Navigation