Open Systems & Information Dynamics

, Volume 13, Issue 4, pp 415–426 | Cite as

Exploring Representation Theory of Unitary Groups via Linear Optical Passive Devices

Article

Abstract

In this paper, we investigate some mathematical structures underlying the physics of linear optical passive (LOP) devices. We show, in particular, that with the class of LOP transformations on N optical modes one can associate a unitary representation of U(N) in the N-mode Fock space, representation which can be decomposed into irreducible sub-representations living in the subspaces characterized by a fixed number of photons. These (sub-)representations can be classified using the theory of representations of semi-simple Lie algebras. The remarkable case where N = 3 is studied in detail.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    M. Nielsen, I. Chuang, Quantum Information and Quantum Computation, Cambridge University Press, 2000.Google Scholar
  2. [2]
    A. Galindo, M.A. Martin-Delgado, Rev. Mod. Phys. 74, 347 (2002).MathSciNetCrossRefADSGoogle Scholar
  3. [3]
    S.A. Gaal, Linear Analysis and Representation Theory, Springer-Verlag, 1973.Google Scholar
  4. [4]
    P. Kok et al., quant-ph/0512071.Google Scholar
  5. [5]
    P. Aniello, R. Coen Cagli, J. Opt. B: Quantum Semiclass. Opt. 7, S711 (2005).MathSciNetCrossRefGoogle Scholar
  6. [6]
    U. Leonhardt, Rept. Prog. Phys. 66, 1207 (2003).CrossRefADSGoogle Scholar
  7. [7]
    M.H. Stone, Proc. Nat. Acad. Scie. U.S.A. 16, 172 (1930); J. von Neumann, Math. Ann. 104, 570 (1931); see also: J. Dixmier, Comp. Math. 13, 263 (1958).MATHCrossRefADSGoogle Scholar
  8. [8]
    P. Jordan, Z. Phys. 94, 531 (1935); J. Schwinger, On angular momentum, in: Quantum Theory of Angular Momentum, L.C. Biedenharn and H. Van Dam, eds., Academic Press, 1965.MATHCrossRefGoogle Scholar
  9. [9]
    V. I. Ma'ko, G. Marmo, P. Vitale, and F. Zaccaria, Int. J. Mod. Phys. A9, 5541 (1994).ADSGoogle Scholar
  10. [10]
    A. Wunsche, J. Opt. B: Quantum Semiclass. Opt. 2, 73 (2000).MathSciNetCrossRefADSGoogle Scholar
  11. [11]
    V. S. Varadarajan, Lie Gorups, Lie Algebras and Their Representations, Springer-Verlag, 1984; Z. X. Wan, Lie Algebras, Pergamon Press, 1975.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Dipartimento di Scienze Fisiche dell’Università di Napoli Federico II Istituto Nazionale di Fisica Nucleare (INFN), Sezione di NapoliComplesso Universitario di Monte S. AngeloNapoliItaly
  2. 2.Dipartimento di Scienze Fisiche dell’Università di Napoli Federico II Complesso Universitario di Monte S. AngeloNapoliItaly

Personalised recommendations