Skip to main content
Log in

Fast and stable rational approximation of generalized hypergeometric functions

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Rational approximations of generalized hypergeometric functions \({}_pF_q\) of type \((n+k,k)\) are constructed by the Drummond and factorial Levin-type sequence transformations. We derive recurrence relations for these rational approximations that require \(\mathcal {O}[\max \{p,q\}(n+k)]\) flops. These recurrence relations come in two forms: for the successive numerators and denominators; and, for an auxiliary rational sequence and the rational approximations themselves. Numerical evidence suggests that these recurrence relations are much more stable than the original formulæ for the Drummond and factorial Levin-type sequence transformations. Theoretical results on the placement of the poles of both transformations confirm the superiority of factorial Levin-type transformation over the Drummond transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of supporting data

All data generated or analyzed through the Hypergeometric Func-tions.jl package during this study are included in this published article. Source code for the figures are available on reasonable request.

References

  1. NIST Digital Library of Mathematical Functions. In: Olver, F.W.J., Olde Daalhuis, A.B., Lozier, D.W., Schneider, B.I., Boisvert, R.F., Clark, C.W., Miller, B.R., Saunders, B.V., Cohl, H.S., McClain, M.A. (eds.) Release 1.1.12 of 2023-12-15 (2023). https://dlmf.nist.gov/

  2. Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions. Dover, New York (1965)

    Google Scholar 

  3. Forrey, R.: Computing the hypergeometric function. J. Comput. Phys. 137, 79–100 (1997)

    Article  MathSciNet  Google Scholar 

  4. Becken, W., Schmelcher, P.: The analytic continuation of the Gaussian hypergeometric function \({}_2{F}_1(a, b;c;z)\) for arbitrary parameters. J. Comp. Appl. Math. 126, 449–478 (2000)

    Article  Google Scholar 

  5. Muller, K.: Computing the confluent hypergeometric function, \(M(a, b, x)\). Numer. Math. 90, 179–196 (2001)

    Article  MathSciNet  Google Scholar 

  6. Michel, N., Stoitsov, M.V.: Fast computation of the Gauss hypergeometric function with all its parameters complex with application to the Pöschl–Teller–Ginocchio potential wave functions. Comp. Phys. Commun. 178, 535–551 (2008)

    Article  Google Scholar 

  7. Colman, M., Cuyt, A., van Deun, J.: Validated computation of certain hypergeometric functions. ACM Trans. Math. Software 38, 11:1-11:20 (2011)

    Article  MathSciNet  Google Scholar 

  8. Willis, J.L.: Acceleration of generalized hypergeometric functions through precise remainder asymptotics. Numer. Algor. 59, 447–485 (2012)

    Article  MathSciNet  Google Scholar 

  9. Doornik, J.A.: Numerical evaluation of the Gauss hypergeometric function by power summations. Math. Comp. 84, 1813–1833 (2015)

    Article  MathSciNet  Google Scholar 

  10. Pearson, J.W., Olver, S., Porter, M.A.: Numerical methods for the computation of the confluent and Gauss hypergeometric functions. Numer. Algor. 74, 821–866 (2017)

    Article  MathSciNet  Google Scholar 

  11. Crespo, S., Fasondini, M., Klein, C., Stoilov, N., Vallée, C.: Multidomain spectral method for the Gauss hypergeometric function. Numer. Algor. 84, 1–35 (2020)

    Article  MathSciNet  Google Scholar 

  12. Johansson, F.: Computing hypergeometric functions rigorously. ACM Trans. Math. Software 45, 30:1-30:26 (2019)

    Article  MathSciNet  Google Scholar 

  13. Bühring, W.: An analytic continuation of the hypergeometric series. SIAM J. Math. Anal. 18, 884–889 (1987)

    Article  MathSciNet  Google Scholar 

  14. Bühring, W.: An analytic continuation formula for the generalized hypergeometric function. SIAM J. Math. Anal. 19, 1249–1251 (1988)

    Article  MathSciNet  Google Scholar 

  15. Iserles, A.: A note on Padé approximations and generalized hypergeometric functions. BIT Numer. Math. 19, 543–545 (1979)

    Article  Google Scholar 

  16. Sidi, A.: A new method for deriving Padé approximants for some hypergeometric functions. J. Comp. Appl. Math. 7, 37–40 (1981)

    Article  Google Scholar 

  17. Drummond, J.E.: A formula for accelerating the convergence of a general series. Bull. Austral. Math. Soc. 6, 69–74 (1972)

    Article  MathSciNet  Google Scholar 

  18. Levin, D.: Development of non-linear transformations for improving convergence of sequences. Int. J. Comput. Math. B3, 371–388 (1973)

    MathSciNet  Google Scholar 

  19. Levin, D., Sidi, A.: Two new classes of non-linear transformations for accelerating the convergence of infinite integrals and series. Appl. Math. Comput. 9, 175–215 (1981)

    MathSciNet  Google Scholar 

  20. Weniger, E.J.: Nonlinear sequence transformations for the acceleration of convergence and the summation of divergent series. Comput. Phys. Rep. 10, 189–371 (1989)

    Article  Google Scholar 

  21. Homeier, H.H.H.: Scalar Levin-type sequence transformations. J. Comp. Appl. Math. 122, 81–147 (2000)

    Article  MathSciNet  Google Scholar 

  22. Sidi, A.: Practical extrapolation methods: theory and applications. Cambridge U. P., Cambridge (2003)

    Book  Google Scholar 

  23. Slevinsky, R.M.: GitHub. https://github.com/JuliaMath/HypergeometricFunctions.jl (2018)

  24. Luke, Y.L.: On economic representations of transcendental functions. J. Math. and Phys. 38, 279–294 (1960)

    Article  MathSciNet  Google Scholar 

  25. Fields, J.L.: Rational approximations to generalized hypergeometric functions. Math. Comp. 19, 606–624 (1965)

    Article  MathSciNet  Google Scholar 

  26. Shelef, R.: New numerical quadrature formulas for Laplace transform inversion by Bromwich’s integral. Master’s thesis, Technion–Israel Institute of Technology (1987)

  27. Homeier, H.H.H., Weniger, E.J.: On remainder estimates for Levin-type sequence transformations. Comput. Phys. Commun. 92, 1–10 (1995)

    Article  MathSciNet  Google Scholar 

  28. Borghi, R., Weniger, E.J.: Convergence analysis of the summation of the factorially divergent Euler series by Padé approximants and the delta transformation. Appl. Num. Math. 94, 149–178 (2015)

    Article  Google Scholar 

  29. Nakatsukasa, Y., Sète, O., Trefethen, L.N.: The AAA algorithm for rational approximation. SIAM J. Sci. Comput. 40, A1494–A1522 (2018)

    Article  MathSciNet  Google Scholar 

  30. Horner, W.G.: A new method of solving numerical equations of all orders, by continuous approximation. Phil. Trans. Roy. Soc. 109, 308–335 (1819)

    Article  Google Scholar 

  31. Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: MPFR: a multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Software 33, 13:1-13:15 (2007)

    Article  MathSciNet  Google Scholar 

  32. Johansson, F.: Arb: efficient arbitrary-precision midpoint-radius interval arithmetic. IEEE Trans. Comp. 66, 1281–1292 (2017)

    Article  MathSciNet  Google Scholar 

  33. Smith, D.A., Ford, W.F.: Acceleration of linear and logarithmic convergence. SIAM J. Numer. Anal. 16, 223–240 (1979)

    Article  MathSciNet  Google Scholar 

  34. Iserles, A.: A first course in the numerical analysis of differential equations. Cambridge Texts in Applied Mathematics, 2nd edn. Cambridge University Press (2009)

  35. Richards, D.S.P.: Totally positive kernels, Pólya frequency functions, and generalized hypergeometric series. Linear Algebra Appl. 137/138, 467–478 (1990)

    Article  Google Scholar 

  36. Driver, K., Jordaan, K., Martínez-Finkelshtein, A.: Pólya frequency sequences and real zeros of some \({}_3F_2\) polynomials. J. Math. Anal. Appl. 332, 1045–1055 (2007)

    Article  MathSciNet  Google Scholar 

  37. Li, Y., Slevinsky, R.M.: Fast and accurate algorithms for the computation of spherically symmetric nonlocal diffusion operators on lattices. J. Comp. Phys. 397, 108870 (2019)

    Article  MathSciNet  Google Scholar 

  38. Krall, H.L., Frink, O.: A new class of orthogonal polynomials: the Bessel polynomials. Trans. Amer. Math. Soc. 65, 100–115 (1949)

    Article  MathSciNet  Google Scholar 

  39. Dočev, K.: On the generalized Bessel polynomials. Bulgar. Akad. Nauk. Izv. Mat. Inst. 6, 89–94 (1962)

    MathSciNet  Google Scholar 

  40. Saff, E.B., Varga, R.S.: Zero-free parabolic regions for sequences of polynomials. SIAM J. Math. Anal. 7, 344–357 (1976)

    Article  MathSciNet  Google Scholar 

  41. Wimp, J.: Recursion formulae for hypergeometric functions. Math. Comp. 22, 363–373 (1968)

    MathSciNet  Google Scholar 

  42. Fox, C.: The asymptotic expansion of generalized hypergeometric functions. Proc. Lond. Math. Soc. 27, 389–400 (1928)

    Article  MathSciNet  Google Scholar 

  43. Wright, E.M.: The asymptotic expansion of the generalized hypergeometric function. J. London Math. Soc. 10, 286–293 (1935)

    Article  Google Scholar 

  44. Gray, H.L., Wang, S.: A new method for approximating improper integrals. SIAM J. Numer. Anal. 29, 271–283 (1992)

    Article  MathSciNet  Google Scholar 

  45. Brezinski, C., Redivo-Zaglia, M.: Extensions of Drummond’s process for convergence acceleration. Appl. Num. Math. 60, 1231–1241 (2010)

    Article  MathSciNet  Google Scholar 

  46. Slevinsky, M., Safouhi, H.: Numerical treatment of a twisted tail using extrapolation methods. Numer. Algor. 48, 301–316 (2008)

    Article  MathSciNet  Google Scholar 

  47. Slevinsky, R.M., Safouhi, H.: The \(S\) and \(G\) transformations for computing three-center nuclear attraction integrals. Int. J. Quant. Chem. 109, 1741–1747 (2009)

    Article  Google Scholar 

  48. Slevinsky, R.M., Safouhi, H.: A recursive algorithm for the \(G\) transformation and accurate computation of incomplete Bessel functions. Appl. Num. Math. 60, 1411–1417 (2010)

    Article  MathSciNet  Google Scholar 

  49. Gaudreau, P., Slevinsky, R.M., Safouhi, H.: Computation of tail probability distributions via extrapolation methods and connection with rational and Padé approximants. SIAM J. Sci. Comput. 34, B65–B85 (2012)

    Article  Google Scholar 

  50. Slevinsky, R.M., Safouhi, H.: A recursive algorithm for an efficient and accurate computation of incomplete Bessel functions. Numer. Algor. 92, 973–983 (2023)

    Article  MathSciNet  Google Scholar 

  51. Hochbruck, M., Ostermann, A.: Exponential integrators. Acta Numer. 19, 209–286 (2010)

    Article  MathSciNet  Google Scholar 

  52. Hale, N., Higham, N.J., Trefethen, L.N.: Computing \(A^\alpha \), \(\log ({A})\) and related matrix functions by contour integrals. SIAM J. Numer. Anal. 46, 2505–2523 (2008)

    Article  MathSciNet  Google Scholar 

  53. Birkhoff, G., Varga, R.S.: Discretization errors for well-set Cauchy problems. I. J. Math. and Phys. 44, 1–23 (1965)

    Article  MathSciNet  Google Scholar 

  54. Ehle, B.L.: \({A}\)-stable methods and Padé approximations to the exponential. SIAM J. Math. Anal. 4, 671–680 (1973)

    Article  MathSciNet  Google Scholar 

  55. Saff, E.B., Varga, R.S.: On the zeros and poles of Padé approximants to \(e^z\). Numer. Math. 25, 1–14 (1975)

    Article  MathSciNet  Google Scholar 

  56. Moler, C., Van Loan, C.: Nineteen dubious ways to compute the exponential of a matrix. SIAM Rev. 20, 801–836 (1978)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank Nick Trefethen for a discussion on Padé approximation to \(e^z\). RMS is supported by the Natural Sciences and Engineering Research Council of Canada, through a Discovery Grant (RGPIN-2017-05514).

Funding

RMS is supported by the Natural Sciences and Engineering Research Council of Canada, through a Discovery Grant (RGPIN-2017-05514).

Author information

Authors and Affiliations

Authors

Contributions

R.M.S. wrote the manuscript and the code.

Corresponding author

Correspondence to Richard Mikaël Slevinsky.

Ethics declarations

Ethical approval

Not applicable

Conflict of interest

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slevinsky, R.M. Fast and stable rational approximation of generalized hypergeometric functions. Numer Algor (2024). https://doi.org/10.1007/s11075-024-01808-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11075-024-01808-w

Keywords

Navigation